O'REILLY"

Python Polars
The Definitive Guide

Transforming, Analyzing, and Visualizing Data
with a Fast and Expressive DataFrame API

Jeroen Janssens

& Thijs Nieuwdorp
Foreword by Ritchie Vink

Python Polars: The Definitive
Guide

Blazingly Fast Data Analysis

With Early Release ebooks, you get books in their earliest
form—the authors’ raw and unedited content as they write—
so you can take advantage of these technologies long before
the official release of these titles.

Jeroen Janssens and Thijs Nieuwdorp

Beijing « Boston « Farnham - Sebastopol - Tokyo KON{={|HAE

Python Polars: The Definitive Guide
by Jeroen Janssens and Thijs Nieuwdorp

Copyright © 2024 Jeroen Janssens and Thijs Nieuwdorp. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black Interior Designer: David Futato
Development Editor: Sarah Grey Cover Designer: Karen Montgomery
Production Editor: Jonathon Owen Illustrator: Kate Dullea

November 2024: First Edition

Revision History for the Early Release
2023-11-21: First Release
2024-01-30: Second Release
2024-03-29: Third Release
2024-05-23: Fourth Release
2024-07-15: Fifth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098156084 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Python Polars: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-15608-4
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098156084

Table of Contents

L £ 0]]3P
Overview
Installing Polars
Compiling Polars from Scratch
Edge Case: Very Large Datasets
Edge Case: Processors Lacking AVX support
Configuring Polars
Temporary Configuration Using a Context Manager
Local Configuration Using a Decorator
Downloading Datasets and Code Examples
Crash Course JupyterLab
Keyboard Shortcuts
Using Polars in a Docker Container
Conclusion

2. DataTypesand Data Structures.ovevvriiirinnienneenierennrenneennns
Arrow Data Types
Nested Data Types
Missing Values
Series, DataFrames, and LazyFrames
Data Type Conversion
Conclusion

3. Eagerand Lazy APIS........ovvrniiiiiiiiiiiiiiiii ittt eiieaiaeaaas
Eager API: DataFrame
Lazy API: LazyFrame
LazyFrame Scan Level Optimizations
Other Optimizations

10
11
12
12
12
13
16
16
16
17
18
19

21
22
26
28
32
33
36

37
38
39
39
42

Performance Differences
Functionality Differences
Aggregations
Attributes
Computation
Descriptive
GroupBy
Exporting
Manipulation and Selection
Miscellaneous
Out-of-Core Computation with Lazy API’s Streaming Mode
Tips and Tricks
Going from LazyFrame to DataFrame and Vice Versa
Joining a DataFrame and a LazyFrame
Caching Intermittent Stages
Conclusion

Readingand WritingData............ccovvviiiiiiiiiiiiiiiiinnennnes

Reading CSV Files
Parsing Missing Values Correctly
Reading Files with Encodings Other than UTF-8
Reading Excel Spreadsheets
Working with Multiple Files
Reading Parquet
Reading JSON and NDJSON
JSON
NDJSON
Other File Formats
Querying Databases
Writing Data
CSV Format
Excel Format
Parquet Format
Other Considerations
Conclusion

Beginning EXpressions.c.vvuiiiiiiiiiiiiiiiiiiiiiiiiiiiaan,

Methods and Namespaces

Expressions by Example
Selecting Columns with Expressions
Creating New Columns with Expressions
Filtering Rows with Expressions

44
46
46
47
47
47
48
48
49
51
51
54
54
55
55
56

57
58
60
61
63
65
67
68
69
71
73
74
76
76
77
77
78
78

79
81
81
82
83
84

iv

| Table of Contents

Aggregating with Expressions

Sorting Rows with Expressions
What Exactly Is an Expression?

Properties of Expressions
Creating Expressions

From Existing Columns

From Literal Values

From Ranges

Other Functions to Create Expressions
Renaming Expressions
Expressions Are Idiomatic
Conclusion

. Continuing EXpressions.oveueeiieriinreniienieeiierenneenneenneenns
Types of Operations
Example A: Element-Wise Operations
Example B: Operations that Summarize to One
Example C: Operations that Summarize to One or More
Example D: Operations that Extend
Element-Wise Operations
Operations That Perform Mathematical Transformations
Operations Related to Trigonometry
Operations That Round and Categorize
Operations for Missing or Infinite Values
Other Operations
Nonreducing Series-Wise Operations
Operations That Accumulate
Operations That Fill and Shift
Operations Related to Duplicate Values
Operations That Compute Rolling Statistics
Operations That Sort
Other Operations
Series-Wise Operations that Summarize to One
Operations That Are Quantifiers
Operations That Compute Statistics
Operations That Count
Other Operations
Series-Wise Operations that Summarize to One or More
Operations Related to Unique Values
Operations That Select
Operations That Drop Missing Values
Other Operations

84
85
86
88
90
90
92
94
96
96
98
100

101
102
103
104
104
105
106
106
107
108
110
111
112
113
114
115
116
118
119
120
121
122
123
124
125
125
126
127
128

Table of Contents

Series-Wise Operations that Extend
Conclusion

. Combining EXpressions.c.coovvivvinniinniennnnnnn,

Inline Operators Versus Methods
Arithmetic Operations
Comparison Operations

Boolean Algebra Operations
Bitwise Operations

Using Functions

Conclusion

Filteringand Sorting Rows.ccovvviiiiiiinnnennnn,

Filtering Rows
Filtering Based on Expressions
Filtering Based on Column Names
Filtering Based on Constraints

Sorting Rows
Sorting Based On a Single Column
Sorting in Reverse
Sorting Based on Multiple Columns
Sorting Based on Expressions
Sorting Nested Data Types

Related Row Operations

Takeaways

. Working with Special Data Types...........ccovvvevvnnnen.

Strings
Methods
Examples

Categoricals
Methods
Examples
Enum

Temporal Data
Methods
Examples

List
Methods
Examples

Array
Methods

131
132

133
134
136
138
141
143
145
149

151
152
152
153
154
155
156
156
157
158
158
160
162

165
166
167
169
174
175
175
179
179
179
181
185
186
187
189
189

vi

| Table of Contents

10.

1.

12.

13.

Examples
Structs

Methods

Examples
Conclusion

Summarizing and Aggregating.eeerieeiiiriiiiiiietiieiiieeiiaaans
Group by Context

The Descriptives

The Advanced

User-Defined Functions

Row-wise Aggregations with reduce and fold

over() Expressions in Selection Context

Dynamic Grouping with group_by_dynamic

Rolling Aggregations with rolling

Conclusion

Joiningand Concatenating.c.oovviiiuiiriiiriiiiiiiiiiiiiieeenaaens
Joining

Join Strategies

Joining on Multiple Columns

Validation
Inexact Joining

join_asof Strategies

Additional Finetuning with tolerance and by

Use Case: Marketing Campaign Attribution
Vertical and Horizontal Concatenation
Conclusion

ReShaping. ... ettt i i i i e
Wide Versus Long DataFrames

Pivot to Wider DataFrame

Melt to Longer DataFrame

Transposing

Exploding

Partition into Multiple DataFrames

Conclusion

Visualizing Data.oouienienniii ittt it ittt iie it e e
NYC Bike Trips
Built-in Plotting with hvPlot

A First Plot

190
191
191
192
195

197
198
200
206
210
216
220
221
224
227

229
229
230
233
233
235
237
239
239
242
251

253
253
255
258
261
262
265
267

269
271
273
273

Table of Contents

vii

Methods in the Plot Namespace
Getting Help for a Method
Pandas as Backup

Manual Transformations
Changing the Plotting Backend
Plotting Points on a Map
Composing Plots

Adding Interactive Widgets
Common Customizations

Alternative Packages

Plotnine
Great Tables

Takeaways

275
276
277
278
279
280
282
285
286
289
289
293
296

viii

Table of Contents

CHAPTER1
First Steps

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Overview

To explore all the exciting features Polars has to offer, you'll need to get it up and
running first. In this chapter youre going to set up our working environment. This
means you'll install Polars, or build it from source if you want to. After that you
will learn how to configure Polars to your liking. You'll also learn how to download
the datasets and code examples that are used in this book. Finally, you'll get a crash
course in JupyterLab, which is the environment in which you’ll be running the code
examples in this book. In case you run into problems you can also run the code in a
Docker container, which is explained at the end of this chapter.

It's recommended that you follow along with the code examples. Learning new libra-
ries tends to stick much better when you're playing around with what you've learned,
as opposed to just reading about the possibilities.

mailto:sgrey@oreilly.com

Installing Polars

In order to start working with Polars, you need to install it! The latest information on
how to install Polars can always be found on the GitHub page. The following section
is based on those instructions at the time of writing.

Polars works with optional dependencies for different use cases. At the time of
writing Polars supports the optional dependencies as shown in Table 1-1.

Table 1-1. Polars dependencies

Tag Description

all Install all optional dependencies (all of the following)

pandas Install with Pandas for converting data to and from Pandas Dataframes/Series
numpy Install with numpy for converting data to and from numpy arrays

pyarrow Reading data formats using PyArrow

fsspec Support for reading from remote file systems

connectorx Support for reading from SQL databases

xlsx2csv Support for reading from Excel files

deltalake Support for reading from Delta Lake Tables

timezone Timezone support, only needed if are on Python<3.9 or you are on Windows

These dependencies can be installed together with Polars by using the following
bracket notation. Since in this book we’ll explore all the possibilities Polars has to
offer we will install all optional dependencies. This can be done by running the
following command in a Jupyter cell:

$ pip install 'polars[all]’

If you want to install a subset of the dependencies you can install it in the following
way:

$ pip install 'polars[pandas,numpy]’

In case you only want to install the base package, the best way to install the latest
version of Polars is to use pip:

$ pip install polars
Alternatively, some use conda to manage packages:
$ conda install -c conda-forge polars

However, pip is the Polars team’s preferred way of installing Polars.

10 | Chapter 1:First Steps

https://github.com/pola-rs/polars

Compiling Polars from Scratch

Compiling Polars code from source has several advantages. Although in the case of
Polars it is unlikely, because there are frequent releases, compiling from source allows
access to the latest changes right away. Compiling from source allows you to make
changes to the source code, re-compile it yourself, and make use of your own custom
functionality. (In case it’s a useful addition for everyone, be sure to contribute it to
the project.) In the case you're working on a non-standard architecture compiling the
code yourself is sometimes even required, because a pre-compiled version may not be
available. And if you really know what youre doing, it’s possible to tweak compiler
optimizations when compiling your own code, potentially resulting in more efficient
or faster software for your use case.

The steps required to compile Polars from source are as following:

1. Install the Rust compiler by following the instructions on the download page

2. Install maturin, a zero-configuration package that helps build and publish Rust
crates with Python bindings.

$ python -m pip install maturin

3. Compile the binary. There’s two ways of compiling the binary:

o In case youre prioritizing runtime performance over build time length (for
example building the package once, and running it with maximum perfor-
mance)

$ cd py-polars
$ maturin develop --release -- -C target-cpu=native

o In case you're prioritizing faster build times over fast performance (for exam-
ple in the case of developing and testing changes):
$ cd py-polars

$ maturin develop --release -- -C codegen-units=16 -C lto=thin \
-C target-cpu=native

Note that the Rust crate implementing the Python bindings is
called py-polars to distinguish from the wrapped Rust crate Polars
itself. However, both the Python package and the Python module
are named polars, so you can conveniently run pip install
polars and import polars.

Compiling Polars from Scratch | 11

https://www.rust-lang.org/tools/install

Edge Case: Very Large Datasets

In case you'll be working with very large datasets that exceed 4.2 billion rows you
will need to install Polars in a different way. Internally Polars uses a 32-bit integer
representation to keep track of the data. If the dataset grows larger than that, Polars
has to be compiled with a bigidx feature flag so the internal representation can reflect
that. Additionally it can be installed using pip install polars-u64-idx. This might
cause a loss of performance in case you don't need it.

Edge Case: Processors Lacking AVX support

Advanced Vector Extensions (AVX) refers to an extension that was made to the x86
instruction set architecture. These extensions allow for more comple and efficient
computation operations at the CPU level. This set of features was first implemented
on Intel's and AMD’s CPUs that were shipped in 2011. These features are unfortu-
nately not available on processors before that time, and are also not available on
Apple Silicon, which is based on the ARM architecture. In case youre working
with a chipset that doesn't support AVX you will need to install polars-1lts-cpu.
This package can also be found on PyPI, and can be installed with pip install
polars-1lts-cpu.

In case you compile this package yourself, be aware that this can
only be compiled with a nightly version of Rust. The stable version
doesn’t allow building with the avx feature flag and will throw
an E0554 error. You can download and set the nightly version as
default by running:

$ rustup install nightly
$ rustup default nightly

If you run other projects that require a stable version of Rust, this
command may disrupt them. To switch back to the stable branch of
Rust, run rustup default stable.

N

Configuring Polars

Polars provides a number of configuration settings. These options allow you to enable
alpha features, change the formatting of printed tables, set logging levels, and set the
streaming chunk size. In the polars.Config class you can find the following settings,
and some additional ones that we won’t cover. A complete overview can be found in
the Polars config documentation online. The section below is an excerpt from that
documentation.

12 | Chapter 1:First Steps

https://pola-rs.github.io/polars/py-polars/html/reference/config.html

The most important ones are shown in Table 1-2.

Table 1-2. A few of the notable Polars configuration settings

Setting Description

activate_decimals(active: bool) The Decimal datatype is currently in alpha. You have to turn it on

manually
set_fmt_str_lengths(n: int) Sets the number of characters used to display string values
set_tbl_cols(n: int) Sets the number of columns that are visible when displaying tables
set_streaming_chunk_size(size: Overwrite chunk size used in streaming engine
int)
set_verbose(active: bool) Enable additional verbose/debug logging

These config options can be changed, saved, and loaded as a JSON string using the
load(cfg: str | Path) and save(file: str | Path) functions. To see the current
state you can call state(). To restore all settings back to the defaults you can call
restore_defaults().

Temporary Configuration Using a Context Manager

To run a specific scope of code with different a different configuration you can use a
context manager. A context manager is a construct in Python that allows for precise
creation and removal of resources. The context for which resources are defined is
indicated by calling the context manager using the with keyword, and indenting the
scope of code that should be affected by it. In Polars’ case only the code within the
scope of the context manager will be executed with the given configuration after
which it returns to the previous settings.

import as

with pl.Config() as cfg:
cfg.set_verbose(True)
Polars operation you want to see the verbose logging of

Code outside of the scope is not affected

A more concise approach is to pass the options directly as arguments to the Config()
constructor. If you use this approach, you can omit the set_ part of the option.

with pl.Config(verbose=True):
Polars operation you want to see the verbose logging of
pass

In order to showcase some of the formatting configuration settings youre going to
generate your first DataFrame. A DataFrame is a two-dimensional data structure
representing data as a table with rows and columns. This is one of the main data

Configuring Polars | 13

structures that is used in Polars. Later on in this book we'll introduce you more
deeply to all structures.

In the code below we've made a short function that is able to generate a random
string with a length that can be set. After that we create a dictionary that has the keys
“column_1” to “column_20" and 5 rows of randomly generated strings with a length
of 50 characters.

import
import

def generate_random_string(length: int) -> str:
return "".join(random.choice(string.ascii_letters) for i1 in range(length))

data = {}
for 1 in range(1, 11):

data[f"column_{1}"] = [generate_random_string(50) for _ in range(5)]

df = pl.DataFrame(data)
Let’s see what this DataFrame looks like when you run the code:
df

shape: (5, 10)

I T T T T T T 1
| column_1 | column_2 | column_3 | .. | column_8 | column_9 | column_10 |
| --- | --- | - |- | --- | - |
| str | str | str | | str | str | str |
L 1 | | | 1 |]
I 1 T T T 1 T 1
NITXKLUkXv	vrLgRRJGXL	ErzIZfRrEq	..	beymgYVfd	bIghJdruq0	HGAFNGSPa
yoyxtzSnWQ	QPcPIFsbjj	jugWnjTSkj		LsnHFrzmS	JqRwQUErd	BmfvCdhzj
.] vg.	zq..	vi.	
MquJeOHNK	ubSBwYOgYk	HQdUpgsJus	..	eCkqtkOlh	WAXfTTOBr	vMRyUWIKs
XceAPNdRbO	fTatOQmkRm	uscqAuvSfP		sGftkqIII	PsfvWUnPQ	NxGcuadnN
.] ox.	Fu.	Iq.	
HlXQdVFTVL	ybazRpdIJh	VEnYHFRNNA	..	LPZvTIIwv	SkjhgiCfk	WFNCagjtg
DbzHFIWPUwW	PzrHJsjSaA	KCTLizyvyl		UqtjLJOoU	eDxeEcShL	aEadCeEDR
. [] jw.	Rg..	Aw..		
dODwyeanR	BmfJOHYZKA	IbXtfyUyNG	..	NOtdyhuly	dbjtoFjvZz	yQFKPBjQV
PMgTAmiEzN	oMfoG1BbBH	DXbgdKpXjo		yTiStIGeI	NZlgFFPGW	vigyHvIrC
.	.	..		3z	EW..	3A. I
IquwotCLy	czZzaPcRNBU	vTlcINzgBB	..	kLtriblaW	ZxIcqHlie	WpcBNWzeo
OyjNrWvpyT	DFuMHNCIGn	zoCWOeoaTT		xtcSpyOnC	MgqgEqCXh	OXJFltrfa
! ! ! ! ! OW... ! DU... ! uf.. !

Unfortunately, the standard DataFrame output doesn't fit in this book. Say you want
to make it fit, but you still want to see as many columns as possible by shrinking the
text that is displayed. In that case you can set the amount of columns that is showed
to minus one (to print all of them), and lower the string length that is displayed to
four.

14 | Chapter 1:First Steps

with pl.Config(tbl_cols=-1, fmt_str_lengths=4):
print(df)

shape: (5, 10)

I T T T T T T T T T 1
| col | colu.. | colu.. | colu.. | colu.. | colu.. | colu.. | colu.. | colu.. | colu.. |
. |- |- |- |- |- |- |- |- |- |
| --- | str | str | str | str | str | str | str | str | str |
| str | | | | I I I I I I
L 1 1 | 1 1 | 1 1 |]
I 1 1 T 1 1 T 1 1 T 1
| NIT | vrLg.. | ErzI.. | aXoG.. | zQXd.. | BqAF.. | PrRN.. | beym.. | bIgh.. | HGdF.. |
| x. | I I I I I I I I I
| Mgz | ubSB.. | HQdU.. | jvRg.. | zcDr.. | Pees.. | Zgsj.. | eCkq.. | WAXf.. | vMRy.. |
[m. | I I I I I I I I I
| HIX | ybaz.. | vtnY.. | JFHN.. | EXzX.. | aBdy.. | QkOA.. | LPZv.. | Skjh.. | WFNC.. |
| Q. | I I I I I I I I I
| dob | Bmfl.. | IbXt.. | rHAq.. | pw3O.. | oRCW.. | 0gCG.. | NOtd.. | dbjt.. | yQFK.. |
| w. | I I I I I I I I I
| TuX | czza.. | vTlc.. | INjW.. | OEuZ.. | AXWe.. | eQTy.. | kLtr.. | ZxIc.. | WpcB.. |
| z.. | I I I I I I I I I
L 1 | | 1 | | 1 | | |

Compact, yet it shows all of the columns. Perfect.

class YourContextManager:
def __enter__(self):

print("Entering context")

def __exit__(self, type , value, traceback):

print("Exiting context")

with YourContextManager():

print("Your code")

Entering context

Your code

Exiting context

Context managers contain two key methods under the hood. They
consist of a __enter__ and __exit__ that are respectively called
before and after running the code within the indicated context. A
small example would be:

One of the popular uses of a context manager is to write or read

from files, which can be done like this:

with open("filename.txt", "w") as file:
file.write("Hello, world!")

Configuring Polars

15

Local Configuration Using a Decorator

If you want to change configuration settings during a specific function call, you
can decorate that function with the pl.Config() decorator. Just as in the context
manager, you can omit the set_ part of the option.

.Config(ascii_tables=True)

def write_ascii_frame_to_stdout(df: pl.DataFrame) -> None:
print(str(df))

.Config(verbose=True)

def function_that_1im_debugging(df: pl.DataFrame) -> None:
Polars operation you want to see the verbose logging of
pass

Downloading Datasets and Code Examples

In order to run the code examples in this book you’ll need to download the data-
sets that are used, using git. git is a version control system, with which you can
download a code repository, and keep track of changes to it. You can install git by
following the instructions on the Git website.

The datasets in this book are available in the repository that accompanies it. After
having downloaded and installed git, you can download the repository by running
the following command below. It will create a new directory in the current working
directory called python-polars-the-definitive-guide.

$ git clone https://github.com/jeroenjanssens/python-polars-the-definitive-guide.git

You can install the dependencies that are needed to run the code examples in this
book by running the following command:

$ cd python-polars-the-definitive-guide
$ pip install -r requirements.txt

This will set up everything on your system to work along with the book.

Crash Course JupyterLab

To run the code examples in this book you’ll need to use Jupyter. Jupyter is a
web-based interactive development environment of notebooks, code, and data. To get
started, you can create a Python 3 Notebook using the button in the top row.

To start Jupyter you can run the following command in the terminal:
$ jupyter lab

This opens a window in the browser with the Jupyter interface. If this does not
pop up, you need to copy the URL that will be printed in the terminal. It will look

16 | Chapter 1:First Steps

https://www.git-scm.com/downloads

something like http://127.0.0.1:8888/1lab?token=.... Click it, or copy and paste
it into a browser window to connect to the Jupyter server inside the container. This
will open up JupyterLab in your browser, in which you can get to work.

In order to work in a Jupyter notebook you’ll need to know some basics. Jupyter con-
tent is loaded in cells. These cells can be marked as different programming languages,
but also as Markdown. In this book you will mostly work with Python code cells.
To navigate and edit these cells Jupyter knows two modes: command mode and edit
mode.

Command mode is the default mode when opening a notebook, or when pressing
Esc when in a cell. When it’s active the selected cell has a blue border, and no cursor
inside of it. Command mode is used to edit the notebook as a whole, or add, delete,
or edit cell types in the notebook.

Edit mode can be activated by pressing Enter when on a selected cell. In this mode
the selected cell gets a green border. Edit mode is used to write in cells.

Keyboard Shortcuts

A few important shortcuts you should know are listed below. Table 1-3 lists shortcuts
that can be run in any mode, Table 1-4 lists shortcuts that can be run in command
mode, and Table 1-5 lists shortcuts that can be run in edit mode.

Any Mode

Table 1-3. Shortcuts that can be run regardless of the current mode

Shortcut Effect

Shift + Enter Run the selected cell, and select the cell below

Ctrl + Enter Run the selected cell, and don’t move the selection
Alt + Enter Run the selected cell, and insert a new cell below
Ctrl+S Save the notebook

Command Mode

Table 1-4. Shortcuts that can be run in command mode

Enter Switch to Edit Mode
Up/K Select the cell above
Down /) Select the cell below
A Insert a new cell above the current cell
B Insert a new cell below the current cell

D, D (press the key twice) Delete the selected cell

Crash Course Jupyterlab | 17

Shortcut Key Action

A Undo cell deletion

M Change the cell type to Markdown

Y Change the cell type to Code
Edit Mode

Table 1-5. Shortcuts that can be run in edit mode

Shortcut Key Action

Esc Switch to Command Mode
Ctrl + Shift + - Split the current cell at cursor

Keep these shortcuts handy and within no-time you’ll fly across the screen in any
Jupyter notebook.

Additionally, Jupyter has a few special marks that can be used in code cells. An
exclamation mark (!) before a command tells the Jupyter kernel to run the command
following it in a bash session, instead of interpreting it as Python. For example, you
can install Polars from notebooks with: !pip install polars

Another special mark that can be used is the percentage mark (%). The percentage
mark is a special feature of the IPython kernel called a **magic" . Magics are built-in
commands designed to solve various common problems. These are not part of the
Python language but theyre features of the IPython shell. Magics come in two
kinds: 1. Line magics: These are preceded by a single % and work a lot like shell com-
mands.In this case we're using the %pip magic with which we can install a package in
the virtual environment that the IPython shell is running in. 2. Cell magics: These are
preceded by double %%. Examples are %%time, which times how long the code in that
cell takes to run, and %%bash which we'll use later to execute multiple bash commands
in one go. To see all other commands the IPython shell has to offer you can run
%Llsmagic.

Using Polars in a Docker Container

There are about as many different system configurations in the world as there are sys-
tems. In case you run into problems when executing the code, you can alternatively
use Docker. Docker allows you to run the code in this book in a container in which
we have precise control over what the system configuration looks like. This way we
can make sure that the code runs on your system the way it runs on ours.

To get started, you need to pull a Docker image. An image can be thought of as the
instructions that describe how to build the container in which you will run our code.

18 | Chapter 1:First Steps

The image you will use in this book is provided by Jupyter, since you will be running
our code from notebooks. To pull the Jupyter image you'll first need Docker.

Go to the Docker website and download Docker Desktop for your operating system.
Once the download is complete, install it, and launch it.

Now that Docker is running in the background you can open up the terminal (also
known as the command prompt on Windows). In that you can run the following
command to run the image.

$ docker run -p 8888:8888 jupyter/minimal-notebook

This command will attempt to run the image jupyter/minimal-notebook. In case it
is not available on the system, it is pulled from the DockerHub. After that docker
starts the container and exposes port 8888 to the system, so that you can open the
Jupyter serve running in docker in the browser.

Conclusion

In this chapter you've learned how to:

« install Polars and optional dependencies, and how to compile it from source if
necessary.

« tweak the configuration of Polars to make it just right.
o download the datasets and code examples that are used in this book.
o run the code examples in JupyterLab.

o run the code examples in a Docker container in case you run into problems.

This will allow you to run Polars yourself and start exploring the opportunities it
brings. In the next chapter you can dive right into that by taking a closer look at
the similarities and differences that Polars has compared to the popular DataFrame
libraries Spark and Pandas.

Conclusion | 19

https://docker.com

CHAPTER 2
Data Types and Data Structures

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Now that you've gotten a sneak peek at the differences between popular data frame
libraries and Polars, it’s time to focus on how Polars works.

Data comes in many shapes and sizes, all of which need to be stored in memory
order to work with it. To accommodate all the data you'll be working with, Polars
implements the Arrow memory specification, which allows an array of data types to
work with. In this chapter you’ll go through these data types, and well elaborate on a
few of the ones that aren’t so straight forward.

First we'll walk through Apache Arrow, the library Polars uses to manage in-memory
data storage. After that we'll go over the different data types that are available. We'll
elaborate on some of the data types that aren'’t so straight forward. Lastly well go over
the structures Polars uses to work with all these data types.

21

mailto:sgrey@oreilly.com

Arrow Data Types

To store data efficiently, Polars builds on top of the Apache Arrow project.

Arrow describes itself as “a cross-language development platform for in-memory
analytics” It defines a “language-independent columnar memory format for flat and
hierarchical data, organized for efficient analytic operations on modern hardware like
CPUs and GPUs” Arrow brings a few advantages out of the box.

First, it uses a columnar format. The columnar format enables data adjacency for
sequential access or scans, which optimizes the process of reading large quantities
of data in a contiguous block. This way you can store the data and read it in large,
sequential chunks.

On top of that, this contiguous columnar layout is vectorization-friendly. It also lets
you use modern Single Instruction, Multiple Data (SIMD) operations, which perform
the same operations on multiple data points simultaneously.

To elaborate on these advantages, we'll introduce the metaphor of a filing cabinet:

This is illustrated in Figure 2-1.

session_id timestamp source_ip
LR 1331246660 3/8/2012 2:44PM 99.155.155.225
LU 1331246351 3/8/2012 2:38PM 65.87.165.114
Row3 [EEkhRZELY(] 3/8/2012 2:09PM 71.10.106.181
LR 1331261196 3/8/2012 6:46PM 76.102.156.138

Traditional Memory Buffer Arrow Memory Buffer SELECT * FROM clickstream
WHERE session_id = 1331246351

1331246660 1331246660
3/8/2012 2:44PM P 1331246351
session_id
99.155.155.225 1331244570
1331246351 1331261196
Intel CPU
3/8/2012 2:38PM 3/8/2012 2:44PM
65.87.165.114 3/8/2012 2:38PM
1331244570 3/8/2012 2:09PM
3/8/2012 2:09PM 3/8/2012 6:46PM

71.10.106.181 99.155.155.225
1331261196 65.87.165.114

timestamp

source_ip

3/8/2012 6:46PM
76.102.156.138

7110.106.181

76.102.156.138

Figure 2-1. Illustration of the Arrow memory buffer and its advantages for computation

22 | Chapter2: Data Types and Data Structures

https://arrow.apache.org/

The advantages could be well explained using a filing cabinet where you store your
sales dossiers. In a row-based format every drawer of the cabinet contains all the data
you need on a single sale. A drawer contains the person it was sold to, what items
were sold, the price of the sale, and when the sale happened. If you always want to dig
up all the information of the sales you made, it’s practical to keep all that information
bundled together.

In analytical queries, however, it's more common to look for specific parts of the
sales dossier, instead of all of it. One example could be the following: you want to
make a report that contains your 5 biggest customers. This way you’ll know what
customers to put some extra effort into and pamper. If you ordered your cabinet in
the row-based manner where every drawer contains the file of one customer youd
have to open up every single drawer to look at the total price of sales, and who the
dossier belongs to.

When we order our cabinet in a way that is column-based every drawer contains
a single data category of all the customers. That means one of the drawers would
contain all the sale prices.

The sequential reading means you can just start at the first file in the drawer, and
keep going to the next one until you reach the end of the drawer. This speeds things
up because you don't have to close the drawer, go to another one, open it, and look
for the relevant file. From the price drawer you can then determine the dossier ID’s
of the biggest customers. In order to know who the customers are you go to name
drawer, and go over the files until you've found the 5 names matching the dossier ID’s
you just found. This means you’ll only have to open 2 drawers instead of all of them,
saving you a lot of hassle and time.

Because of this columnar format, Arrow provides O(1), or constant-time, random
access. This means that no matter how large the data set becomes, the time it takes to
access any single piece of data remains constant. If we go back to our filing cabinet
analogy, this would look like we know exactly where every piece of information is
stored. Not only which drawer, but also exactly where in the drawer. This means you
don’t have to go searching through drawers until you come to the relevant piece of
data. For operations that need to access specific data points in a large dataset, this is a
significant performance benefit.

Arrow supports implementations in many popular languages. At the time of writing
these include: C/GLib, C++, C#, Go, Java, JavaScript, Julia, MATLAB, Python, R,
Ruby, and Rust. The degree of implementation might differ between languages: for
example the Float16 data type is not implemented in every language.

Arrow DataTypes | 23

A Float32 data type is a 32-bit floating point number format, also
known as single-precision floating point. This is more common
than the 16-bit half-precision format and provides a good balance
between range and precision.

These 32 bits contain the following information:
o The Ist bit represents the sign bit (0 for positive, 1 for nega-
tive)

» The 2-9th bits represent the exponent by which the fraction is
multiplied

 The 10-32nd bit represent the fraction with an implicit leading
1 before the binary representation.

The formula for calculating the value of a Float32 is given by:
(- 1)571971, *(1+ fraction)* z(exponent - bias)

The bias for Float32 is a constant value of 127. This means that the
actual exponent value in decimal form is obtained by subtracting
this bias from the exponent’s binary representation. The reason a
float uses a bias is to ensure it can represent both very large and
very tiny numbers efficiently.

As an example consider the following float in bits:

010000010 10100000000000000000000

« 0 - means the float is positive.
+ 10000010 - The exponent in binary, which is 130 in decimal.

« 10100000000000000000000 - This is the fraction part in
binary. It’s calculated by adding an implicit leading 1 (for nor-
malized numbers) to the binary digits, interpreted as follows: 1

(the implicit leading 1) plus 1* 27! (the first digit, representing
0.5) plus 0*272 (the second digit, ignored since its 0) plus

1*273 (the third digit, representing 0.125). Subsequent digits
are zeros and do not contribute to the value. Therefore, the
fractionequals 1 +0.5+0.125=1.625

Plugging these values into the formula gives:

« Float=(—-1)"*(1+0.5+0.125)*2(130-127)
« Float=1*1625*8
o Float=13

Implementations in many languages let you use a shared mutable dataset without
serialization/deserialization. Normally different languages have different implementa-

24 | Chapter2: Data Types and Data Structures

tions of the ways data is represented in the bits in memory. This means that in order
to match data across languages you first have to deserialize the data from one format,
and then serialize it to the format of the other. This translation step takes time. Arrow
prevents this by allowing all supported implementations and languages to talk in a
unified way to the same dataset. This sharing of a mutable dataset is called Inter
Process Communication (IPC).

The core of Polars is written in Rust to benefit from the language’s performance.
Using the Arrow Rust implementation, Polars has implemented the data types shown
in Table 2-1. Some data types occur multiple times with different bit-sizes. This
allows you take store data that fits within the range with a smaller memory footprint.

Table 2-1. Data types available in Polars

Group Type Details Range
Base class DataType Base class for all Polars data types.
Numeric Decimal Decimal 128-bit type with an optional precision Can exactly represent 38 significant
and non-negative scale. digits
Float32 32-bit floating point type. -3.4e+38 t0 3.4e+38
Float64 64-bit floating point type. -1.7e+308 to 1.7e+308
Int8 8-bit signed integer type. -12810 128
Int16 16-bit signed integer type. -32,768 to 32,767
Int32 32-bit signed integer type. -2,147,483,648 to 2,147,483,647
Int64 64-bit signed integer type. -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
UInts 8-bit unsigned integer type. 0to 255
UInt16 16-bit unsigned integer type. 0t0 65,535
UInt32 32-bit unsigned integer type. 010 4,294,967,295
UInt64 64-bit unsigned integer type. 0 to 1.8446744e+19
Temporal Date Calendar date type. Uses the Arrow date32 data -5877641-06-24 to 5879610-09-09
type, days since UNIX epoch 1970-01-01 as
int32.
Datetime Calendar date and time type. Exact timestamp

encoded with int64 since UNIX epoch. Default
unit microseconds.

Duration Time duration/delta type.
Time Time of day type.

Nested Array(*args, Fixed length list type.
**kwargs)
List(*args, Variable length list type.
**kwargs)

Struct(*args, Struct type.
**kwargs)

Arrow DataTypes | 25

Group Type Details Range

Other Boolean Boolean type taking 1 bit of space. True or False
Binary Binary type with variable-length bytes.
Categorical A categorical encoding of a set of strings. Allows

for more efficient memory usage if a column
contains few unique strings.

Null Type representing Null / None values.
Object Type for wrapping arbitrary Python objects.
String UTF-8 encoded string type of variable length.
Unknown Type representing Datatype values that could

not be determined statically.

Sometimes when creating a DataFrame using Python data, arbi-
trary Python data may need to be added. One example could be
that in a DataFrame you want to store a machine-learning model.
In this case the Object data type is used. This data type allows for
arbitrary Python objects to be put into a DataFrame.

The downside is that this data cannot be processed using the nor-
mal functions. None of the optimizations are used, because Polars
does not use Python to look at what the data represents. This
means that an Object column can be seen as a passenger in the
DataFrame, which is passed on in joins, but does not take part in
optimized calculations.

Generally using an Object is discouraged when the data can be
represented by another data type, but there might be use cases for
it.

In documentation you may find the Unknown data type. The
Unknown data type is only used internally as a placeholder and
should not be used in your code.

Nested Data Types

You mightve noticed that the nested data types have arguments. This is because
nested data types are a special class of data types. A data type is nested when it can
contain other data types. The arguments define things like how many elements it can
contain, and what data types it contains. Polars has three of these: Array, List, and
Struct.

26 | Chapter2:Data Types and Data Structures

An Array is quite similar to a Numpy ndarray. It’s a collection of elements that are of
the same data type. Besides this the length of the array must be the same on all rows.
The arguments Array takes are the width of the array and the data type in the array.

import as

array_df = pl.DataFrame(

[
pl.Serties("array_1", [[1, 31, [2, 511),
pl.Series("array_2", [[1, 7, 31, [8, 1, 011),
1,
schema={
"array_1": pl.Array(width=2, inner=pl.Int64),
"array_2": pl.Array(width=3, inner=pl.Int64)
}
)
array_df

shape: (2, 2)

array_1 array_2

T T
| |
| |
| array[i64, 2] | array[i64, 3]
i :
| |
| |
1 |

[1, 3]
[2, 5]

[11 7’ 3]
(8, 1, 0]

A List is comparable to an Array in that it is a collection of elements of the same
data type. However in contrast to the Array, a List does not have to have the same
length on every row. Note that it’s different from the Python list which can contain
different data types. It is possible to store Python lists in the column, by making the
data type Object. The only argument List takes is what data type it contains.

list_df = pl.DataFrame(
{
"integer_lists": [[1, 21, [3, 411,
"float_lists": [[1.0, 2.0], [3.0, 4.0]],
}

)
list_df

shape: (2, 2)

integer_lists | float_lists

I I
I I
I |
| list[i64] | list[f64]
i i
I I
I |
L 1

[1, 2] [1.0, 2.0]
[3, 4] [3.0, 4.0]

Arrow DataTypes | 27

Lastly, the Struct is the idiomatic way of working with multiple columns in Polars.
The way Polars transforms data is with the use of expressions. We'll dive deeper into
them in Chapter 4, for now all you need to know is that they are functions that map
an input Series, to an output, also type Series: fn(Series) -> Series To allow
expressions to use multiple columns as input, the Struct data type can be used to
represent a collection of columns as a single column. This way an expression that
requires multiple columns as input can still meet the requirement of only taking a
Series as input. This means that a Struct can contain different data types, as long as
they match over rows. 'Struct's can be constructed using Python dictionaries, like so:

rating_series = pl.Series(
"ratings",
[
{"Movie": "Cars", "Theatre": "NE", "Avg_Rating": 4.5},
{"Movie": "Toy Story", "Theatre": "ME", "Avg_Rating": 4.9},
1,
)

rating_series

shape: (2,)
Series: 'ratings' [struct[3]]
[
{"Cars","NE",4.5}
{"Toy Story","ME",4.9}
1

Missing Values

In Polars, missing data is always represented with null. This null for a missing value
applies to all data types, including the numerical ones. Information about missing
values is stored in metadata of the Arrow array.

Additionally, whether a value is missing is stored in its validity bitmap, which is a
bit that is set to 1 if the value is present and 0 if it is missing. This lets you cheaply
check how many values are missing in a column, using methods like null_count()
and is_null().

To demonstrate this, we'll create a DataFrame with some missing values:

df = pl.DataFrame(
{
"value": [None, 2, 3, 4, None, None, 7, 8, 9, None],
1,
)
print(df)

shape: (10, 1)

—
| value |

28 | Chapter2: Data Types and Data Structures

You can fill in missing data using the fill_null() method, which you can call in
multiple ways:

+ Using a single value
« Using a fill strategy
» Using an expression

« Using an interpolation

The following example shows how you can fill with a single value pl.11t(...) value:

print(
df
.with_columns(
pl.col("value")
UL null(-1)
.alias("filled_with_lit")

)
shape: (10, 2)

I I 1
value	filled_with_lit
i64	164
i l i	
null	-1

2	2
3	3
4	4
null	-1

| null | -1

7	7
8	8
9	9
null	-1

L 1 |

Arrow DataTypes | 29

The second option is to use a fill strategy. A fill strategy allows you to pick an
imputation method out of the following list:

None: Do not fill missing values.

forward: Fill with the previous non-null value.
backward: Fill with the next non-null value.

min: Fill with the minimum value of the column.
max: Fill with the maximum value of the column.

mean: Fill with the mean of the column. Note that this mean is cast to the data type
of the column, which in the case of an int means the part behind the comma is
cut off.

zero: Fill with 0.
one: Fill with 1.

In the example below you’ll see all of these strategies next to each other:

print(

df

.with_columns(
pl.col("value")
Ul _null(strategy="forward")
.alias("forward"),
pl.col("value")
fUll_null(strategy="backward")
.alias("backward"),
pl.col("value")
i1l _null(strategy="min"
.alias("min"),
pl.col("value")
Ul _null(strategy="max")
.alias("max"),
pl.col("value")
fill_null(strategy="mean"
.alias("mean"),
pl.col("value")
f1ll_null(strategy="zero"
.alias("zero"),
pl.col("value")
fill_null(strategy="one"
.alias("one"),

)
shape: (10, 8)

I I I I I I I I 1
| value | forward | backward | min | max | mean | zero | one |

30

| Chapter 2: Data Types and Data Structures

-
[N
N

i64 i64

~
N
ESY
—
N
E~Y
—
N
F~Y

ull

O VWO ~NPr~DdMDMWNDI

O O ~N~N~NDPWNNN
N WO OoONNNDWNN
O WV oO~NWVOUDRWNLO
UnoVw oo ~NULLuh WNW
© VWO NOOh~WNO
m OO ~NRFE, P DWNPRE

null

2
c
—
—

| | |
L 1 1
) T T
null	

f I I

The third way of filling null values is with an expression like
pl.col("value").mean():

print(
df
.with_columns(
pl.col("value")
UL null(pl.col("value").mean())
.alias("expression_mean")

)
shape: (10, 2)

value | expression_mean

f64

i64

T T
| |
| |
| |
i :
| null |
| 2 |
| 3 |
| 4 |
| null |
| null |
| 7 I
| 8 |
| 9 |
| null |
1 I

U1V oo ~NULTuh WNWL
o oo uUnuULo oowun

The fourth and last way of filling nulls is with an interpolation method like df . inter
polate()

print(
df.interpolate()
)

shape: (10, 1)

—
| value |

Arrow DataTypes | 31

—
o
-

}[

c
—

OV oo~NOUVL A~ WND

2
C ¢ o o ¢ e e e e
:‘ [cl ool oNoNo oMo Ry

|

NaN (meaning “not a number”) values are not considered missing
data in Polars. These values are used for the Float data types to
represent the result of an operation that is not a number.

Consequently, NaN values are not counted as null values in func-
tions like null_count() or fill_null(). As an alternative, use
is_nan() and fill_nan() to work with these values.

Series, DataFrames, and LazyFrames

All these types of data can be stored in a Series or a DataFrame. A Series is a
single column of data of the same data type. A DataFrame is a two-dimensional data
structure that represents the data as a table with rows and columns. A DataFrame is
internally represented as a collection of Series of the same length. Every Series (and
so every column in a DataFrame) are internally represented as a ChunkedArray.

A ChunkedArray is a container class for a sequence of arrays of data. Using Chunke-
dArrays instead of a single array with all the data allows for several optimizations,
including optimized memory management. When you add data to a ChunkedArray,
the data is added to the existing object. This way Polars doesn’t have to copy over data
to a new one and also doesn’t have to garbage collect the old one, saving time. On top
of that, Polars allows for splitting data in chunks that can be operated on individually
and in parallel in order to maximize performance. Each chunk can be processed by a
different CPU core, speeding up calculations dramatically.

32 | Chapter2:Data Types and Data Structures

Managing these chunks optimizes the way Polars works with data.
Rechunking is the process of changing the chunk size of a Chunke-
dArray. In Polars rechunking generally refers to putting all the data
in a single chunk. Within every chunk the data is kept contiguous
in memory. In the eager case after reads the data is rechunked.
This is done because the assumption is that in eager mode the user
wants to perform analysis on the data. Often the same frame will be
queried multiple times, which makes the additional time it takes to
rechunk worth the effort. When using a lazy evaluation the query
optimizer decides when to rechunk.

Generally this is something you won't have to take into account. It’s
just good to know that when setting the rechunk parameter to True
in an operation, there’s actually two operations happening. This is
something to be taken into account when benchmarking.

A LazyFrame is a DataFrame that is evaluated lazily. This means that where a Data-
Frame is an object that contains all the data in memory, a LazyFrame contains no
actual data at all. All the read operations and transformations applied to it are not
evaluated until they are needed. Until the point where the resulting DataFrame is
needed, it is nothing more than a query graph containing the computational steps
necessary to get the final result. Working with this graph provides several opportuni-
ties for optimization using a query optimizer.

We will dive deeper into the usage of the different API’s, among which is the Lazy
API, in Chapter 5.

Data Type Conversion

One of the functions of a Series is cast(). This changes the data type from the cur-
rent one to the one provided as an argument. Say after parsing a csv file, all the data
in it is currently a string. Together with the DataFrame function .estimated_size()
we can estimate how much memory a DataFrame takes.

string_df = pl.DataFrame({"id": ["10000", "20000", "30000"]1})
print(string_df)
print(f"Estimated size: {string_df.estimated_size('b')} bytes")

shape: (3, 1)
| —

id
I I

~

tr

|
1

| 10000 |
| 20000 |
| 30000 |

%]

Data Type Conversion | 33

| I
Estimated size: 15 bytes

However you know that one column only contains numeric data types, which can be
stored more efficiently. Changing the data type would look like this:

int_df = string_df.select(pl.col("id").cast(pl.UInt16))
print(int_df)
print(f"Estimated size: {int_df.estimated_size('b')} bytes")

shape: (3, 1)
| —

| id |
|
| vie |

| —
1

| 10000 |
| 20000 |
| 30000 |
| I

P

c

Estimated size: 6 bytes

That simple cast to a better fitting data type reduced the used memory immensely by
over an estimated 60%! Using the optimal data types can provide a lot of performance
advantages.

Table Table 2-1 shows the ranges per data type for those which it is relevant. By
choosing the smallest size data type that still fits, memory usages can be optimized.

In the example above you used the cast function as an expression. You can also
use it on a DataFrame or LazyFrame. In that case you can cast multiple columns at
once using a single dtype to which all columns can be mapped, or a mapping. This
mapping can be a Python dictionary describing which columns should be cast to
which data type. The keys can be column names, or column selectors. Here are the
ways to use the cast() function, starting with casting everything to one dtype:

df = pl.DataFrame(

{
"id": [10000, 20000, 30000],
"value": [1.0, 2.0, 3.0],
"value2": ["1", "2", "3"],

}

)
df.cast(pl.UInt16)

shape: (3, 3)

I I 1
| id | value | value2 |
I R R
| ute6 | ute | uis |
i : l :
| 10000 | 1 | 1 |

34 | Chapter2:Data Types and Data Structures

| 20000 | 2 | 2 |
| 30000 | 3 | 3 |
L | 1 |

Or with a mapping, to specifically cast columns:

df.cast({"id": pl.UInt16, "value": pl.Float32, "value2": pl.UInt8})
shape: (3, 3)

T
id | value

I I 1
	value2	
vi6	f32	u8
: l l l		
10000	1.0	1
20000	2.0	2
30000	3.0	3
L | 1 |

You can also cast specific dtypes to others as follow:

df.cast({pl.Float64: pl.Float32, pl.String: pl.UInt8})
shape: (3, 3)

I T I 1
| id | value | value2 |
IS I I
| i64 | f32 | u8 |
: : : :
10000	1.0	1
20000	2.0	2
30000	3.0	3
L | 1 |

And lastly, you can use column selectors to cast columns:

import as
df.cast({cs.numeric(): pl.UInt16})

shape: (3, 3)

I T T 1
| id | value | value2 |
IR TS IR
| vi6 | ul6e | str |
i : : :
10000	1	1
20000	2	2
30000	3	3
L | | |

Basic casting doesn’t always magically work. In some cases special methods need to be
used because data cannot be parsed without extra knowledge. One of the examples is
when parsing a DateTime from a String. In Chapter 9 you’ll read about methods that
allow for this more advanced casting.

Data Type Conversion | 35

Conclusion

In this chapter you went over the following:

» The Arrow memory specification that Polars uses under the hood.
o The different data types Polars offers for data storage.

o Some data types offer their own special operations, such a strings, categoricals,
and time-related data types. We'll dive deeper into these specifics in chapter 10.

» How missing data is handled in Polars.

o The structures Polars provides for working with that data: Series, DataFrame,
and LazyFrames.

» Changing data types using cast()

This knowledge can be used to fill our DataFrames. In the next chapter you'll dive
into the different API’s Polars offers to work on this data.

36 | Chapter2:Data Types and Data Structures

CHAPTER 3
Eager and Lazy APIs

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

In this chapter, we look at the two different types of Polars Application Programming
Interfaces (APIs): the eager API and the lazy API. Each API addresses specific use
cases and has unique performance characteristics. Understanding these APIs is criti-
cal to effectively using Polars’ data processing and analysis capabilities.

The eager API uses an immediate execution model. Functions are executed sequen-
tially, and data manipulation occurs in real time. This model is ideal for data explo-
ration and iterative tasks, providing immediate feedback after each operation. This
immediacy is similar to the user experience in Pandas, providing a smooth transition
for those familiar with it.

Conversely, the lazy API defers the execution of data transformations until necessary.
This deferred execution allows Polars to comprehensively optimize queries, improv-
ing performance, especially in large-scale and performance-sensitive scenarios.

37

mailto:sgrey@oreilly.com

Understanding the nuances of these APIs and their optimization strategies is essential
to realizing the full potential of Polars for data analysis and manipulation. By the end
of this chapter, you will be equipped with the knowledge to choose the right API for
your needs and use it effectively in your data science projects.

Eager API: DataFrame

The eager API in Polars operates on an immediate execution model, where each func-
tion is executed sequentially, line by line, on the dataset. This approach is particularly
effective for data exploration and iterative analysis, as it allows for direct interaction
with the data at every step. Users execute functions on intermediate results, providing
immediate feedback and insights, which is invaluable for making informed decisions
about subsequent queries. This execution style is very similar to the experience
offered by packages like Pandas, making it a familiar and intuitive choice for those
transitioning from or accustomed to the Pandas workflow.

In this example, we'll explore the eager API of Polars through a practical application.
We have a dataset of taxi trips, and our goal is to analyze the data to derive the top
three vendors by revenue per distance traveled. Let’s break down the process step by
step to understand how the eager API facilitates this analysis. Note that we use the
%%time cell magic to time and print how long the code execution takes.

import as

%%time
trips = pl.read_parquet("data/taxi/yellow_tripdata_*.parquet") (1)
sum_per_vendor = trips.group_by("VendorID").sum()

income_per_distance_per_vendor = sum_per_vendor.select(
"VendorID",
income_per_distance=pl.col("total_amount") / pl.col("trip_distance")

)

top_three = ((3]
income_per_distance_per_vendor.sort(
by="1income_per_distance",
descending=True
)
.head(3)

)
top_three

CPU times: user 9.45 s, sys: 8.7 s, total: 18.1 s
Wall time: 8.52 s
shape: (3, 2)

T T 1
| VendorID | income_per_distance |
[|
| | |

164 f64

38 | Chapter3:Eagerand Lazy APls

L 1

I 1

| | 6.

| 6 | 5.296493
| | 4.

L |

1 434789
5 731557

© This reads all the Parquet files that match the glob pattern. A glob pattern is a
string definition used to specify groups of filenames by matching patterns. We'll
dive deeper into this in Chapter 4 on reading and writing data. For now, it is
sufficient to know that the dataset consists of several files, which Polars reads
into a DataFrame in one go. The function read_parquet() returns a DataFrame
which is executed using the eager APL

® All columns are summed by VendorID, so you can calculate with total amounts.

© From these sums you can calculate the average income per distance traveled for
all trips per vendor.

After the data is sorted, you can select the top three, answering our earlier question:
“Who are the top three vendors by revenue per distance traveled?”

When doing this kind of analysis, it's often better to tackle the main problem in
smaller parts. This way, you get to see the data at each step, which helps you make
better choices for the next steps.

Lazy API: LazyFrame

The lazy API defers executing all selection, filtering, and manipulation until the
moment it is actually needed. This gives the query engine more information about
what data and transformations are actually needed, and allows for a bunch of opti-
mizations that heavily increase performance. We'll talk about those next. The best
uses cases for the lazy API include big and complex datasets and performance-critical
applications where speed is of the essence.

Next we'll discuss some of the biggest optimizations the query planner applies to lazy
queries. These make the lazy API a great choice for these use cases.

LazyFrame Scan Level Optimizations

The first group of optimizations considers data loading at the scan level. The scan
level is the layer of execution where Polars reads data from its source. These optimiza-
tions are focused on completely avoiding reading data that won’t be used.

Projection pushdown means optimizing a query by moving column selection as far
upstream as possible. This prevents unused columns from being read into memory.

Lazy API: LazyFrame | 39

In this example we'll explore the same dataset as the one we just used for the eager
API. We will still try to find out the top three vendors by revenue per distance
traveled. However, this time we'll use the lazy API instead:

1f = pl.scan_parquet("data/taxi/yellow_tripdata_*.parquet") (1]
1f.select(pl.col("trip_distance")).show_graph()

scan_parquet() does not immediately read the file from disk. Instead it returns
a LazyFrame for which only relevant metadata is scanned. This metadata con-
tains information such as the schema and the number of rows and columns. The
LazyFrame exposes the lazy API of Polars. The methods available are practically
same, with the difference that it’s only executed when you call . collect().

This selects only the trip_distance column, then prints the query plan with
show_graph(), so you can see what happens in the query engine. You can see
behind 7 that only 1 in 19 columns will be read into memory in the first place.

m1/19

Parquet SCAN 12 files: first file: data/taxi/yellow_tripdata_2022-01 .parquet;

m®1/19;
()'_

Figure 3-1. The resulting query plan when scanning the taxi dataset and selecting a
single column.

The query plan requires some explanation:

The first step executed is the one at the bottom, so read the graph from bottom to
top.

Every box corresponds with a stage in the query plan.
The o stands for SELECTION and indicates any row filter conditions.
The 7 stands for PROJECTION and indicates choosing a subset of columns.

In Figure 3-1 you can see that 7 contains a selection of 1 out of the 19 available

columns. In Figure 3-2 you can see that the o contains a filter on the trip_distance
column.

40

Chapter 3: Eager and Lazy APIs

Moving on to the next optimization, predicate pushdown is like projection pushdown,
but it focuses on filtering rows instead of selecting columns. This helps avoid reading
rows that aren’t needed.

1f.filter(pl.col("trip_distance") > 10).show_graph()

[Parquet SCAN 12 files: first file: data/taxi/yellow_tripdata_2022-01 .parquet;
7T */19;
o (col("trip_distance")) > ...]

Figure 3-2. The resulting query plan when filtering values in the column trip_distance

The code above filters the trip_distance column for values larger than 10. In figure
Figure 3-2 you can see the filter behind the o. This filter will be applied row wise.

The last one is slice pushdown, which loads only the required data slice from the
scan level (where the data is read into memory). Similarly to predicate pushdown, it
prevents reading unused rows, but instead of reading rows based on a filter, it reads
rows based on whether they belong to a certain chunk of data, using this command:

1f.fetch(n_rows=2)

shape: (2, 19)

I T T T T T T 1
| VendorID | tpep_picku | tpep_dropo | .. | total_amou | congestion | airport_f |
| --- | p_datetime | ff_datetim | | nt | _surcharge | ee |
| 164 | --- I [- [--- | --- I
| | datetime[n | -- | | fea | fe4 | fe4 |
I | s] | datetime[n | | I I I
I I | s] [| | I
i : i = : : :
1	2022-01-01	2022-01-01	..	21.95	2.5	0.0
	00:35:40	00:53:29			[
1	2022-01-01	2022-01-01	..	13.3	0.0	0.0
	00:33:43	00:42:07			[
L 1 1 1 1 1 1]

This operation takes only the first two rows of the data at the scan level and collects
the frame, which is returned as a DataFrame.

The methods fetch(10) and head(10) are similar but not the same. The
fetch(nrows: int) method will load the first n_rows rows at the scan level, whereas
head(nrows: 1int) is applied at the end. This means that when applying fetch(), any
aggregations in the query plan will show wildly different results compared to a full
run.

Lazy API: LazyFrame | 41

On the other hand, using head() runs the full calculation and only picks out the
results at the end. It's best to use fetch() to quickly test if the query plan runs,
whereas head() can be used to filter out the top results, as calculated with full data.

These pushdowns completely prevent the execution of later applied transformations
on data that is not necessary to achieve the end result.

Other Optimizations

Other optimizations are more focused on efficient computing. For this well create a
small LazyFrame as a running example.

lazy_df = pl.LazyFrame({
"foo": [1, 2, 3, 4, 5],
"bar": [6, 7, 8, 9, 10]
i)
One such optimization is common subplan elimination. A subplan, or subtree, is a
group of steps in the query plan. When certain operations or file scans are used by
multiple subtrees in the query plan, the results are cached for easy reuse. For instance:

common_subplan = lazy_df.with_columns(pl.col("foo") * 2)

Utilizing the common subplan in two separate expressions
exprl = common_subplan.filter(pl.col("foo") * 2 > 4)

expr2 = common_subplan.filter(pl.col("foo") * 2 < 8)

result = pl.concat([exprl, expr2])

result.show_graph(optimized=False)
result.show_graph()

42 | Chapter3:Eagerand Lazy APIs

UNION

FILTER BY ((col("foo") * (2)) > (4...

FILTER BY ((col("foo") * (2)) < (8...

WITH COLUMNS ["foo"]

TABLE
T */2;
0-;

WITH COLUMNS ["foo"]

TABLE
T */2;

Figure 3-3. Unoptimized query plan

UNION

FILTER BY ((col("foo") * (2)) > (4...

FILTER BY ((col("foo") * (2)) < (8...

CACH

E: 1times

WITH COL

UMNS ["foo"]

T

TABLE

*/2;

Figure 3-4. Optimized query plan

Lazy API: LazyFrame |

8B

Here you combine the expressions which share the common subplan via the pl.con
cat() method. Figure 3-3 shows the query if it were not optimized. Figure 3-4 shows
the optimized version, in which you can see that the file is read only once, with only
the “f00” column being selected, whereas in the unoptimized variant the file is read
twice. After that the different filters are applied.

In many cases, the eager API is actually calling the lazy API under
the hood and immediately collecting the result. This has the benefit
that the query planner can still make optimizations within the
query itself. On top of that, it’s easier for the maintainers because
the method of the eager API is a thin wrapper around the lazy API,
deduplicating the code.

In addition, the lazy API can catch schema errors before processing the data. The
query plan contains the knowledge of what needs to happen at each step along the
way and what the result should look like.

Take the next example. You'll make a LazyFrame that contains names and ages of
three people. If you take the age column, which contains the int dtype, and treat it as
str, you'll immediately get a SchemaError before any calculation is done.

1df = pl.LazyFrame({
"name": ["Alice", "Bob", "Charlie"],
"age": [25, 30, 35]

b

erroneous_query = ldf.with_columns(
pl.col("age").str.slice(1,3).alias("sliced_age")
)

result_df = erroneous_query.collect()
SchemaError: invalid series dtype: expected 'String’, got "i64°

This allows queries to fail fast and provide a short feedback loop that improves
programming efficiency. If you were working on large datasets with long-running
queries, it would've taken you hours to run into the error. This instant feedback can
save your life!

Performance Differences

We recommend you try executing identical queries using both the lazy and eager
APIs. It’s a good way to see the profound optimization benefits. Let’s examine the
eager query we ran earlier on a dataset of taxi trip records stored in Parquet format:

%%time
trips = pl.scan_parquet("data/taxi/yellow_tripdata_*.parquet")
sum_per_vendor = trips.group_by("VendorID").sum()

44 | Chapter3:Eagerand Lazy APIs

income_per_distance_per_vendor = sum_per_vendor.select(
"VendorID",
income_per_distance=pl.col("total_amount") / pl.col("trip_distance")
)
top_three = income_per_distance_per_vendor.sort(
by="1income_per_distance",
descending=True
) .head(3)
top_three.collect()

CPU times: user 2.01 s, sys: 301 ms, total: 2.31 s
Wall time: 592 ms
shape: (3, 2)

I T 1
VendorID	income_per_distance
164	f64
: :	
1	6.434789
6	5.296493
5	4.731557
L |]

This returns the same DataFrame, but the lazy API does it about 10 times faster as the
eager API! Now that’s what we call blazingly fast.

In Polars, a LazyFrame is evaluated and converted into a DataFrame only when you
invoke the collect() method. While this lazy evaluation offers efficiency gains, it’s
crucial to note that subsequent calls to collect() will recompute the LazyFrame
from scratch. This means the same calculations will be run multiple times, which you
want to prevent.

We'll make a small LazyFrame with two columns of three rows and act like it’s a very
big dataset with long calculation times.

1f = pl.LazyFrame({"col1": [1,2,3], "col2": [4,5,6]})

Some heavy computation

print(lf.collect())

print(lf.with_columns(pl.col("coll") + 1).collect()) # Recalculates the LazyFrame

shape: (3, 2)

e —
| coll | col2 |
RS ey
| 164 | 164 |

TR W—
I I I
I I I
I I I
[I
shape: (3, 2)

w N =
[o) WV, NN

I —
| coll | col2 |

Performance Differences | 45

Functionality Differences

The big difference between a LazyFrame and a DataFrame is that, in a LazyFrame, the
data is not available until it’s collected. This means certain functionalities will not be
available. We'll go through the different types of operations in the next section and
point out the differences.

Aggregations

All the aggregations (such as getting the mean, min and max values of a column) that
can be applied to a DataFrame can also be applied to a LazyFrame. These operations
don’t require the query planner to have knowledge about the data up front, and will
be added to the query plan to be executed upon data collection. The set of methods
available to only the DataFrame are horizontal aggregations as shown in Table 3-1.
Horizontal aggregations are operations that are applied row-wise across columns,
such as sum_horizontal().

Table 3-1. Aggregation methods of DataFrames vs LazyFrames

Method DataFrame LazyFrame

.max() v v
.max_horizontal()
.mean() v v
.mean_horizontal(..) v
.median() v v
.min() v v
.min_horizontal() Vv
.null_count() v v
.product() v
.quantile(..) v v
.std(..) v v
.sum() v v
.sum_horizontal(.)
var(..) v v

46 | Chapter3:Eagerand Lazy APls

Attributes

Of all the attributes that are available to a DataFrame, the LazyFrame lacks shape,
height, and flags as shown in Table 3-2. The first two describe the number of
columns and rows of the DataFrame has, which can only be given once the data is
available. flags is a dictionary containing indicators like whether a column is sorted,
which is used internally for optimizations.

Table 3-2. Attributes of DataFrames vs LazyFrames

Attribute DataFrame LazyFrame

.columns v v
.dtypes Vv v
.flags v
.height Vv
.schema Vv v
.shape Vv
width v v
Computation

DataFrames have the computation methods fold() and hash_rows() where a Lazy-
Frame doesn’t have computation methods at all. Both of these computations are
row-wise reductions. fold() allows you to provide a function that reduces two Series
to one, where hash_rows() just hashes all the information on a row to a UInté64
value.

Descriptive

The only descriptive methods a LazyFrame has are explain() and show_graph(), to
showcase the query plan as shown in Table 3-3. A DataFrame has a lot of methods to
showcase specifics about the data, such as describe() and estimated_size().

Table 3-3. Descriptive methods of DataFrames vs LazyFrames

Method DataFrame LazyFrame

.approx_n_unique() v

.describe(..) v
.estimated_size(.) v
.explain(..) v
.glimpse() v

.is_duplicated() v

Functionality Differences | 47

Method DataFrame LazyFrame

.is_empty() v
.is_unique() v
.n_chunks() v
.n_unique(..) v

.show_graph(..) v

GroupBy

All the methods you can apply to a group in the GroupBy context are the same in
both, except that a DataFrame lets you iterate over the groups as shown in Table 3-4.

Table 3-4. GroupBy methods of DataFrames vs LazyFrames

Method DataFrame LazyFrame

_iter__()
-agg(..)
.allQ)
.apply(..)
.count()
first()
.head(..)
.last()
.map_groups(...)
.max()
.mean()
.median()
.min()
.n_unique()
.quantile(..)
.sum()
Ltail(..)

NN N N N NN N N NN NN
SN N N N N N N N N N N NS NEN

Exporting

A DataFrame has several options of exporting the data to different formats. Formats
include Arrow, Numpy, Pandas, dictionaries, a Series containing structs, and even
a string containing the Python code required to initialize the DataFrame! Since a
LazyFrame doesn’t have any data, there’s no possibility for exports.

48 | Chapter3:Eagerand Lazy APls

Manipulation and Selection

The manipulation and selection methods are the most important ones. They contain
the core functionality of data manipulation. Table 3-5 shows the many differences

between the two APIs.

Table 3-5. Manipulation methods of DataFrames vs LazyFrames

Method DataFrame LazyFrame

.approx_n_unique()
.bottom_k(...)
.cast(..)

.clear(..)

.clone()

.drop(..)
.drop_1in_place(..)
.drop_nulls(..)
.explode(..)
.extend(..)
fill_nan(..)
FLULnull(..)
filter(..)
.find_1idx_by_name(..)
first()
.gather_every(..)
.get_column(..)
.get_column_index(..)
.get_columns()
.group_by(..)
.group_by_dynamic(..)
.group_by_rolling(..)
.head(..)

.hstack(..)
.insert_at_idx(..)
.insert_column(..)
.inspect(..)
.interpolate()
.item(..)

.iter_columns()

NN NN SN N NN N N NN

NN N N N N S SENE NN

SN

v

NIENENENEN

<

NIENENIEN

Functionality Differences

49

Method DataFrame LazyFrame

.iter_rows() v
.iter_slices(..)

.join(..)

S NIENEN

.join_asof(..)
.last()
Cimit(.)
.melt(..)

.merge_sorted(..)

NENENENENEN

.partition_by()
.pipe(..)

.pivot(..)
.rechunk()
.rename(...)
.replace(..)
.replace_at_1idx(..)
.replace_column(..)
.reverse()
.rolling(..)

.row()

.rows()
.rows_by_key(..)
.sample(..)
.select(..)
.select_seq(..)
.set_sorted(..)
.shift(..)
.shift_and_fill(..)
.shrink_to_fit(..)

NENENENEN

.slice(..)
.sort(..)
.tatl(..)
.take_every(..)
.top_k¢(..)

NENENENEN

.to_dummies(..)

.to_series(..)

NN N N N N N N N N N T N N N N N N N N N NN U N NN NN

.transpose(..)

50 | Chapter3:Eagerand Lazy APls

Method DataFrame LazyFrame

.unique(..) v
.unnest(..) v
.unstack(..)
.update(..)
.upsample(..)
.vstack(..)

.with_columns(..)

NN NN NN RN

.with_columns_seq(..)

.with_context(..)

NIENENEN

\

.with_row_count(..)

Miscellaneous

The miscellaneous methods are the ones that dont fit in any of the other categories,
shown in Table 3-6.

Table 3-6. Miscellaneous methods of DataFrames vs LazyFrames

Method DataFrame LazyFrame

.cache() v
.collect(..) v
.collect_async() v
.corr(..) v
.equals(..) v
.fetch(..) v
.frame_equal(.)
.lazy() v v
.map(..) v
.map_batches(..) v
.map_rows(..) v
.pipe(..) v
.profile(..) v

Out-of-Core Computation with Lazy API's Streaming Mode

The lazy API offers a special mode to do computations out-of-core: that is processing
data that would be too large to fit into RAM by doing the calculations on chunks of
data instead. The amazing thing about supporting out-of-core computation is that it
moves the barrier for processing data from the size of your RAM to the size of your

Out-of-Core Computation with Lazy API's Streaming Mode | 51

hard disk, which can be a difference of orders of magnitude! You can trigger this
mode by passing streaming=True to the collect() function to collect the end result
to RAM, or you can write the results to disk using .sink_csv(..), .sink_ipc(..)
or .sink_parquet(..). If you use .collect(streaming=True), the end result must fit
in RAM.

In streaming mode, the API reads the data in chunks of rows. This chunk size is
determined based on the number of threads available to perform the work in and the
number of columns in the dataset.

How many threads are available on your system? To find out, you need the number
of logical CPU cores available on your machine by default (or the container you are
working in). By running the following code you can find this number:

pl.thread_pool_size()
12

Although this number generally works out of the box, there is an option to add
or reduce the number of threads through the environment variables. This could be
useful if other CPU-intensive tasks are running at the same time and the system
needs some breathing room to prevent time-outs in other processes. You must set this
environment variable before importing Polars, using the following code. For example:

import
os.environ["POLARS_MAX_THREADS"] = "2"
import as

Understanding Python Environment Variables

Example 3-1.

Environment variables in Python are key-value pairs that can be set for and read from
the runtime environment. They can be particularly useful for several reasons:

1. Security: They provide a secure way to store sensitive information like database
credentials and API keys, keeping them out of your source code.

2. Configuration: Environment variables allow you to change the behavior of your
Python application without altering the code. For example, you can set variables
to differentiate between development and production environments.

52 | Chapter3:Eagerand Lazy APls

3. Portability: By using environment variables, you can easily migrate your appli-
cation across different environments (local, staging, production) without code
changes.

In Python, you can access environment variables using the os module, specifically
os.environ. This acts like a dictionary, where you can retrieve values using their
keys. For example, os.environ['POLARS_MAX_THREADS'] would give you the number
of threads Polars is allowed to use.

To determine chunk size works use the following formula:

thread_factor = max [L, 1}
n_threads

50000
n_cols*thread_ factor

chunk_size = max { y 1000]

Let’s split that up:

The thread_factor will be 1 if you have 12 or more threads, and will be greater
than 1 if you have fewer threads. This means the thread_factor goes down the more
threads are available.

16

14

12 A

10 A

(o]
1

thread factor

0 T T T T T T T
0 2 4 6 8 10 12 14 16

n_threads

Figure 3-5. Thread factor

Out-of-Core Computation with Lazy API's Streaming Mode | 53

This code sets the chunk size to the maximum value, 1000, or (50000 / n_cols *
thread_factor).

The chunk size goes up if the thread factor goes up, which it does when fewer threads
are available. This means that if there are more threads available, the chunk size will
shrink. The idea is to process more chunks of data at the same time, using more
RAM.

If there are more columns in the dataset, the chunk size also goes down, because each
row contains more data (and thus uses more RAM).

However, it is possible to overwrite the streaming chunk size. This can be necessary
if the chunk size Polars determines by default still causes memory issues. You can do
this with the following config setting:

pl.Config.set_streaming_chunk_size(1000)

Tips and Tricks

In the next section we'll cover some tips and tricks. Most of these will be very
practical in your day-to-day usage of Polars. This is typically the kind of information
that you won't find in the documentation, but that can make your life a lot easier.

Going from LazyFrame to DataFrame and Vice Versa

Jazy()
e *
DataFrame LazyFrame

‘\.collect()/

Figure 3-6. The operations to swap to the other API

You can swap from one API to the other with a single command, as shown in
Figure 3-6.

You can go from the eager API to the lazy API by adding .lazy() behind a Data-
Frame, or methods returning a DataFrame. This results in no computation, but tells
the query planner to use the data in memory as a starting point for a new query plan.

You can go from the lazy to eager API by calling .collect() on a LazyFrame,
or a function returning a LazyFrame. This executes the query plan built for that
LazyFrame, triggering computation. Afterwards, the result will be stored in RAM.

54 | Chapter3:Eagerand Lazy APls

If you're using streaming mode and not calling .collect(), but calling .sink_par
quet() instead, the result is written to disk.

Joining a DataFrame and a LazyFrame

When you perform joins in Polars, the data structures involved must be of the same
type. Specifically, you cannot directly join a DataFrame with a LazyFrame. You might
want to do this if for example you've got a small DataFrame with metadata that you
want to join to a large dataset that you've got in a LazyFrame.

Here’s a snippet that would result in an error:
1f = pl.LazyFrame({"1d": [1,2,3], "valuel": [4,5,6]})
df = pl.DataFrame({"id": [1,2,3], "value2": [7,8,9]})
1f.join(df, on="1d")
TypeError: expected ‘other’ join table to be a LazyFrame, not a 'DataFrame’

Fortunately, resolving this is straightforward. You can either make the DataFrame
lazy by appending .lazy(), or materialize the LazyFrame using .collect(). We
advise sticking with the lazy API for better performance and efficiency.

Here’s how to successfully perform the join by making the DataFrame lazy:
1f = pl.LazyFrame({"id": [1,2,3], "valuel": [4,5,6]})
df = pl.DataFrame({"id": [1,2,3], "value2": [7,8,9]})
1f.join(df.lazy(), on="1d")
<LazyFrame [3 cols, {"id": Int64 .. "value2": Int64}] at 0x284228A90>

Where in the first output we got a TypeError, we now get a valid LazyFrame!

Caching Intermittent Stages

To avoid unnecessarily recomputing the frame, you can cache the LazyFrame in
memory by chaining .collect().lazy() after the heavy computation. This will
evaluate the LazyFrame, keep it in memory, and return a new LazyFrame pointing to
the materialized data stored in RAM.

Here’s how you can optimize the above example:

1f = pl.LazyFrame({"col1": [1,2,3], "col2": [4,5,6]})

Some heavy computation

1f = 1f.collect().lazy()

print(1lf.collect())

print(lf.with_columns(pl.col("coll") + 1).collect()) # Utilizes the cached LazyFrame

shape: (3, 2)

I —
| coll | col2 |

Tipsand Tricks | 55

This pattern can be a lifesaver when dealing with resource-intensive computations,
as it enables you to leverage the benefits of lazy evaluation while mitigating its
computational drawbacks.

Conclusion

In this chapter we've covered eager and lazy APIs in Polars. Among other things, you
learned about:

The eager API and its representation in Polars as DataFrames.
The lazy API and its representation in Polars as LazyFrames.
The best use cases for each APL

The optimizations possible in the lazy API.

The functionality differences between the eager and lazy APIs.

The lazy API streaming mode which lets you calculate out-of-core with larger-
than-RAM datasets.

Some practical tips, like how use caching to avoid calculating the same Lazy-
Frame multiple times, and how to join DataFrames and LazyFrames.

With this knowledge, you can determine which is the perfect API for your use case.
Now it’s time to learn to load data from files into the structures we've talked about in
this chapter. The next chapter is about reading and writing data to and from different
file formats.

56

| Chapter3: Eager and Lazy APIs

CHAPTER 4
Reading and Writing Data

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Now that you've seen some essential concepts such as data types and the different
APIs, youre ready to learn about working with external data sources. That includes
reading data from files and databases into Polars. We'll also cover how to write your
results to files and databases. By the end of this chapter, you’ll be able to start working
with your own data. We encourage you to start using your own data as soon as
possible, because it will make learning about Polars not only more enjoyable but also
more effective.

Because external data can come in all sorts of ways from all sorts of places, Polars
has over 30 functions related to reading data, and those functions accept many
arguments. It would be challenging and, more importantly, extremely boring to cover
every function and every argument in this chapter. That's what the official API
documentation is for. Instead, we will focus on the formats and situations that youre
most likely to encounter.

In this chapter, you’'ll learn how to:

57

mailto:sgrey@oreilly.com
https://pola-rs.github.io/polars/py-polars/html/reference/
https://pola-rs.github.io/polars/py-polars/html/reference/

o Read and write data in many formats, including CSV, Excel, and Parquet
+ Handle multiple files efficiently using globbing

o Correctly read missing values

o Deal with character encodings

» Read data eagerly and lazily
We're using a couple of additional packages:

o xlsx2csv to read Excel spreadsheets
+ chardet to determine the character encoding of a file
+ connectorx to connect to databases

o pyarrow to read PyArrow datasets

Chapter 2 has instructions for how to install these packages.

In order to demonstrate working with various data formats, this chapter uses a lot of
datasets. The instructions to get the corresponding files are in Chapter 2. We assume
that you have the files in the data subdirectory.

As usual, we start by importing Polars:

import as

Reading CSV Files

We'll start with comma-separated values (CSV), the file format that is perhaps most
prevalent in programming, data analysis, and scientific research. Despite its preva-
lence, it’s not without its flaws. When youre handed a file with the extension .csv,
there’s no knowing what’s inside:

o Is the delimiter a comma, a tab, a semicolon, or something else?

o Is the character encoding UTF-8, ASCII, or something else?

o Is there a header with column names? How many lines is it?

o How are missing values represented?

o Are values properly quoted?
Polars can handle all these situations, but there might be some trial and error
involved.

Imagine, for a moment, that we have a straightforward CSV file such as data/pen-
guins.csv. Before we immediately start loading this data into Polars, let’s have a look at

58 | Chapter4: Reading and Writing Data

the raw contents of the file using the command-line tool cat (Note that the output is
truncated):

$ cat data/penguins.csv

"rowid","species","island","bill_length_mm","bill_depth_mm
"1","Adelie","Torgersen",39.1,18.7,181,3750,"male",2007
"2","Adelie","Torgersen",39.5,17.4,186,3800, "female", 2007
"3","Adelie","Torgersen",40.3,18,195,3250,"female",2007
"4" ,"Adelie","Torgersen",NA,NA,NA,NA,NA,2007

. with 340 more lines

non
B

flipper_length_mm"..

At first glance, this CSV file appears to be straightforward indeed. The first line is a
header and the delimiter is a comma, which matches Polars’ defaults. Moreover, the
character encoding is compatible with UTF-8. (More on this later.) This makes us feel
confident enough to read the dataset into a Polars DataFrame:

penguins
penguins

shape: (344, 9)

pl.read_csv("data/penguins.csv")

T T T T T T 1
| rowid | species | island | .. | body_mass_g | sex | year

[=== | --- [--- || --- | ==] - |
| 164 | str | str | | str | str | 164 |
: : : — : : :
1	Adelie	Torgersen	..	3750	male	2007
2	Adelie	Torgersen	..	3800	female	2007
3	Adelie	Torgersen	..	3250	female	2007
4	Adelie	Torgersen	..	NA	NA	2007
5	Adelie	Torgersen	..	3450	female	2007
.. [..	.. [. [..				
340	chinstrap	Dream	..	4000	male	2009
341	Chinstrap	Dream	..	3400	female	2009
342	chinstrap	Dream	..	3775	male	2009
343	Chinstrap	Dream	..	4100	male	2009
344	chinstrap	Dream	..	3775	female	2009
1 I I L I I I

It looks like this CSV file has been read correctly, except for one thing: “NA” values
are not interpreted as missing values. We'll fix that in the next section.

If your CSV file is different then perhaps the arguments listed in Table 4-1 can help.

Table 4-1. Common arguments for the function pl.read_csv()

Argument

source

has_header

columns

separator

Path to a file or a file-like object.

Indicate if the first row of dataset is a header or not.

Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

Single byte character to use as delimiter in the file.

Reading CSV Files

59

Argument Description

skip_rows Start reading after a certain number of lines.
null_values Values to interpret as null values.

encoding Default: ut 8. utf8-lossy means that invalid UTF-8 values are replaced with €» characters. When
using other encodings than utf8 or utf8-lossy, the input is first decoded in memory with Python.

Parsing Missing Values Correctly

It's quite common for a dataset to have missing values. Unfortunately for plain-text
formats such as CSV, there’s no standard way to represent these. Representations that
we've seen in the wild include NULL, Nil, None, NA, N/A, NaN, 999999, and the
empty string.

By default, Polars only interprets empty strings as missing values. Any other rep-
resentations need to be passed explicitly as a string (or a list of strings) to the
null_values argument. So let’s fix those missing values in data/penguins.csv:

penguins = pl.read_csv("data/penguins.csv", null_values="NA")

penguins

shape: (344, 9)

T T T E— T T 1
| rowid | species | island | .. | body_mass_g | sex | year |
[=== | --- | --- |1 --- | --- |-
| 164 | str | str | | 64 | str | 164 |
i : : = : : :
1	Adelie	Torgersen	..	3750	male	2007
2	Adelie	Torgersen	..	3800	female	2007
3	Adelie	Torgersen	..	3250	female	2007
4	Adelie	Torgersen	..	null	null	2007
5	Adelie	Torgersen	..	3450	female	2007
[.	. [. [. [.				
346	chinstrap	Dream	..	4000	male	2009
341	chinstrap	Dream	..	3400	female	2009
342	chinstrap	Dream	..	3775	male	2009
343	chinstrap	Dream	..	4100	male	2009
344	chinstrap	Dream	..	3775	female	2009
L L ! L1 L 1 I

When DataFrames are rendered in ASCII, such as in this book, all
strings are displayed without quotes. That means you won’t be able
to check visually whether missing values are interpreted correctly.

When you're using Jupyter Notebook, you'll get an HTML render-
ing of a DataFrame. Here, missing values are displayed as “null”
without quotes, whereas regular strings are displayed with quotes.

60 | Chapter4: Reading and Writing Data

If youre not sure whether all missing values have been parsed correctly, you can
count them programmatically using the null_count() method:

(
penguins
.null_count()
.transpose(include_header=True, column_names=["null_count"]) (1]

)
shape: (9, 2)

column null_count

u32

str

I

|

|

|

I

| rowid

| species

| island

| bill_length_mm

| bil1l_depth_mm

| flipper_length_mm
| body_mass_g

| sex

| year

L

O L NNNNOOGOO

© We transpose the output to get a better overview of all the counts.

Reading Files with Encodings Other than UTF-8

Every text file has a certain character encoding. A character encoding is a system
that assigns unique codes to individual characters in a set, allowing them to be
represented and processed by computers.

Polars assumes that the CSV file is encoded in UTF-8, which is a widely used encod-
ing. UTF-8 can represent any character in the Unicode standard, which includes a
vast range of characters from a multitude of languages, both modern and historic, as
well as a wide array of symbols.

If you try to read a CSV file with a different encoding than UTF-8, you'll ideally' get
an error, just like we get here with data/directors.csv:

pl.read_csv("data/directors.csv")

ComputeError: could not parse ‘e¢ee as dtype “str’ at column 'name' (column num
ber 1)

The current offset in the file is 19 bytes.

1 We say “ideally”, because then it’s clear that you've not specified the correct encoding.

Reading Files with Encodings Other than UTF-8 | 61

You might want to try:

- increasing ‘infer_schema_length’ (e.g. “infer_schema_length=10000"),
- specifying correct dtype with the ‘dtypes’ argument

- setting ‘ignore_errors”™ to "True~,

- adding ‘eeee to the 'null_values' list.

Original error: '"‘invalid utf-8 sequence' "’
Apparently data/directors.csv is not encoded in UTF-8.
If you start guessing the encoding, you could end up using one that doesn't upset

Polars, but the bytes in your file could still get interpreted incorrectly. If you're not
familiar with the language, then it’s difficult to spot something’s off.

Now let’s imagine you're told that your file contains the names of directors, including
some Asian names. Your best guess is to try an encoding common for Chinese
characters:

pl.read_csv("data/directors.csv", encoding="EUC-CN")

shape: (4, 3)

T T T 1
| name | born | country |
(SRR R
| str | 164 | str

L 1 1]
) T T 1
E&	1930	¥
verhoeven	1938	A&
B%&	1942	%
Tarantino	1963	#4E
L L L i

That worked. Or did it? When you verify this by translating (using, for example, your
favorite search engine) the first country from Chinese to English, it says “Weeping
plastic” What? That’s no country we've ever heard of!

Instead of guessing the encoding, it’s better to let the chardet package detect it. The
function below returns the encoding for a given filename. Let’s apply this function to
our CSV file:

import

def detect_encoding(filename: str) -> str:
"""Return the most probable character encoding for a file."""

with open(filename, "rb") as f:
raw_data = f.read()
result = chardet.detect(raw_data)
return result["encoding"]

detect_encoding("data/directors.csv")

62 | Chapter4: Reading and Writing Data

'EUC-JP'

So chardet detected a different encoding—one that’s often used for Japanese charac-
ters. Let’s try the “EUC-JP” encoding with Polars:

pl.read_csv("data/directors.csv", encoding="EUC-JP")

shape: (4, 3)

T T T 1
| name | born | country |
(SN R
| str | i64 | str

L 1 |]
I T T 1
| R | 1930 | B I
verhoeven	1938	A5 A
=i	1942	BZ
Tarantino	1963	KE
1 I I |

Now this is correct. Trust us, we checked it.

Conclusion: youd better not guess the encoding of a file. This holds not just for CSV
files, but for all text-based files, including JSON, XML, and HTML.

Reading Excel Spreadsheets

While CSV is common in data-heavy, programmatic, and analytical contexts, Excel
spreadsheets are common in business contexts, which often involve manual data
inspection, data entry, and basic analyses.

They can contain complex data, markup, formulas, and charts. Although useful for
business applications, these features can hamper reading the spreadsheet into Polars.
Ideally, the spreadsheet would only contain data in a rectangular shape, just like a
CSV file.

To read Excel spreadsheets into a DataFrame, Polars uses the xlsx2csv package.
(Instructions on how to install this package can be found in Chapter 2.) Let’s read
data/top-2000-2023.xIsx, which is a spreadsheet from Top2000, an annual Dutch
radio program. It contains the 2,000 most popular songs as voted by the station’s
listeners in 2023.

songs = pl.read_excel("data/top2000-2023.x1sx") (1]
songs

shape: (2_001, 4)
| positie | titel

artiest

| |

| |
| 164 | str | str | 164 |
EEERREERE | mme e R | -eeee !
| null | null | null | null |
| 1 | Bohemian Rhapsody | Queen | 1975 |

Reading Excel Spreadsheets | 63

2	Roller Coaster	Danny Vera	2019
3	Hotel California	Eagles	1977
4	Piano Man	Billy Joel	1974
.	.	.	.
1996	Charlie Brown	Coldplay	2011
1997	Beast Of Burden	Bette Midler	1984
1998	It Was A Very Good Y..	Frank Sinatra	1968
1999	Hou Van Mij	335	2008
2000	Drivers License	Olivia Rodrigo	2021

© The Dutch column names translate to position, title, artist, and year. (Fun fact:
Dutch is, after Frysian, the closest relative of English.)

Our spreadsheet has only one flaw: the header spans two rows. (Note that the first
row only contains missing values.) This can be fixed as follows:

songs_fixed = pl.read_excel(

"data/top2000-2023.x1sx", read_options={"skip_rows_after_header": 1}
)

songs_fixed

shape: (2_000, 4)

T T T T 1
positie	titel	artiest	jaar
]	-		
164	str	str	164
L 1 1 1 1			
I 1 1 1 1			
1	Bohemian Rhapsody	Queen	1975
2	Roller Coaster	Danny Vera	2019
3	Hotel California	Eagles	1977
4	Piano Man	Billy Joel	1974
5	Fix You	coldplay	2005
..
1996	Charlie Brown	coldplay	2011
1997	Beast Of Burden	Bette Midler	1984
1998	It was A Very Good Y..	Frank Sinatra	1968
1999	Hou Van Mij	335	2008
2000	Drivers License	olivia Rodrigo	2021
L I I I i

The additional argument that we pass to pl.read_excel() is a dictionary of argu-
ments that will be passed on to the pl.read_csv(). That’s because, under the hood,
the Excel spreadsheet is first converted to a CSV file. Table 4-2 lists some other
commonly used arguments.

Table 4-2. Common arguments for the function pl.read_excel()

Argument Description

source Path to a file or a file-like object.
sheet_id Sheet number to convert (0 for all sheets). Defaults to 1 if neither this nor sheet_name are
specified.

64 | Chapter4: Reading and Writing Data

Argument Description

sheet_name Sheet name to convert. Cannot be used in conjunction with sheet_1id.
xsx2csv_options Extra options passed to xUsx2csv.X1lsx2csv().e.q.: {"skip_empty_lines": True}

read_csv_options Extra options passed to pl.read_csv() for parsing the CSV file returned by
x1sx2csv.Xlsx2csv().convert()

Polars only supports Excel spreadsheets with the .xlsx extension. If you find
that pl.read_excel() doesnt work with your spreadsheet files, we recommend
you try the Pandas function pd.read_excel(). Besides .xlsx, this function sup-
ports .xls, .xlsm, .xIsb, .odf, .ods, and .odt. Later in this chapter, in “Other File Formats”
on page 73, we'll explain how to convert a Pandas DataFrame into a Polars Data-
Frame.

Working with Multiple Files

If your data is spread across multiple files and those files all have the same format and
schema, you might be able to read them all at once.

For instance, let’s consider daily stock information for three companies: ASML
Holding N.V. (ASML), NVIDIA Corporation (NVDA), and Taiwan Semiconductor
Manufacturing Company Limited (TSM). The data is split across multiple CSV files,
such that we have one file per company per year. The files are named according to
the pattern data/stock/"_<symbol>_/_<year>_.csv'. For example: data/stock/nvda/
2010.csv and data/stock/asml/2022.csv.

Because these files have the same format and schema, we can use a globbing pattern.
Globbing patterns can contain special characters, such as asterisks (*), question
marks (?), or square brackets ([]), which act as wildcards. An asterisk matches zero
or more characters in a string, while a question mark matches exactly one character.
For example, the pattern *.csv will match any filename that ends in .csv, and the
pattern file?.csv will match files like fileI.csv or fileA.csv but not file12.csv. To match
one character of a certain set or a range, you can use square brackets. For example,
file-[ab].csv matches file-a.csv and file-b.csv. The pattern file-[0-9].csv matches
file-0.csv, file-1.csv, file-2.csv up to file-9.csv.

To read NVIDIA stock data for years 2010 through 2019, use the following pattern:

pl.read_csv("data/stock/nvda/201[0-9].csv")
shape: (2_516, 8)

I T T T T T T 1
symbol	date	open	..	close	adJ close	volume
- -	-	-	-	-		
str	str	f64		fea	f"64	i64
1 l 1 1 1 1 1 1						
I T T T T T T 1						
NvDA	2010-01-04	4.6275	..	4.6225	4.24115	80020400

Working with Multiple Files | 65

NvDA	2010-01-05	4.605	..	4.69	4.303082	72864800
NVvDA	2010-01-06	4.6875	..	4.72	4.330608	64916800
NvDA	2010-01-07	4.695	..	4.6275	4.245738	54779200
NVvDA	2010-01-08	4.59	..	4.6375	4.254913	47816800
. []	..	. I		
NVDA	2019-12-24	59.549999	..	59.654999	59.432919	13886400
NvDA	2019-12-26	59.689999	..	59.797501	59.574883	18285200
NvDA	2019-12-27	59.950001	..	59.217499	58.997044	25464400
NvDA	2019-12-30	58.997501	..	58.080002	57.863789	25805600
NvDA	2019-12-31	57.724998	..	58.825001	58.606007	23100400
L 1 | 1 | 1 | |

To read all CSV files in data/stock directory, use two asterisks, because they’re located
in different subdirectories:

all_stocks = pl.read_csv("data/stock/*/*.csv"
all_stocks

shape: (18_476, 8)

T
symbol | date

I T T T T T 1
| | open | .. | close | adj close | volume |
|] | - |- | --- |-
| str | str | fe4 | | fe4 | fo4 | i64 |
L | 1 1 1 1 1]
I T T 1 T 1 1 1
ASML	1999-01-04	11.765625	..	12.140625	7.5722	1801867
ASML	1999-01-05	11.859375	..	13.96875	8.712416	8241600
ASML	1999-01-06	14.25	..	16.875	160.525064	16400267
ASML	1999-01-07	14.742188	..	16.851563	10.510445	17722133
ASML	1999-01-08	16.078125	..	15.796875	9.852628	10696000
.]	.	. I	
Tsm	2023-06-26	102.019997	..	100.110001	100.110001	8560000
Tsm	2023-06-27	101.150002	..	102.080002	102.080002	9732000
TSM	2023-06-28	100.5	..	100.919998	100.919998	8160900
Tsm	2023-06-29	101.339996	..	100.639999	100.639999	7383900
	101.400002	..	100.919998	100.919998	11701700	
L | | | | | |

TSM | 2023-06-30
1

If you cannot express the files you wish to read through a globbing pattern, then you
can use a manual approach:

1. Construct a list of filenames to read.

2. Read those files using the appropriate Polars function (e.g., pl.read_csv()).

3. Combine the Polars DataFrames using the pl.concat() function.

Here’s an example where we read all ASML stock data from leap years:
import

filenames = [
f"data/stock/asml/{year}.csv"
for year in range(1999, 2024)
if calendar.isleap(year)

66 | Chapter4: Reading and Writing Data

1

filenames

['data/stock/asml/2000.
'data/stock/asml/2004.
'data/stock/asml/2008.
'data/stock/asml/2012.
'data/stock/asml/2016.
'data/stock/asml/2020.

csv',
csv',
csv',
csv',

[

csv',
csv']

pl.concat(pl.read_csv(f) for f in filenames)

shape: (1_512, 8)

I T T T T T T 1
| symbol | date | open | .. | close | adj close | volume

|] | - |- | - |-
| str | str | fea | | fea | fea | 164 |
L l 1 1 1 1 1 1
) T T T T T T 1
AsML	2000-01-03	43.875	..	43.640625	27.218985	1121600
ASML	2000-01-04	41.953125	..	40.734375	25.406338	968800
ASML	2000-01-05	39.28125	..	39.609375	24.704666	1458133
ASML	2000-01-06	36.75	..	37.171875	23.184378	3517867
ASML	2000-01-07	36.867188	..	38.015625	23.710632	1631200
.. [.]		
ASML	2020-12-24	478.950012	..	483.089996	471.932404	271900
ASML	2020-12-28	487.140015	..	480.23999	469.148193	449300
ASML	2020-12-29	489.450012	..	484.01001	472.831177	377200
ASML	2020-12-30	488.130005	..	489.910004	478.594879	381900
ASML	2020-12-31	490.0	..	487.720001	476.455444	312700
L | | | | | | |

Reading Parquet

The Parquet format is a columnar storage file format optimized for use in big-data

processing frameworks like Apache Spark, Apache Hive, and of course, Polars. It
offers efficient compression and encoding schemes, improving performance and

reducing storage space.

Compared to row-based formats like CSV and Excel, Parquet is more efficient at
reading and writing large datasets, especially when querying specific columns. Addi-
tionally, Parquet supports complex nested data structures, while CSV and Excel are
generally flat, making Parquet a more versatile choice for complex datasets.

Parquet files also include the schema of the data, eliminating the kind of errors that
we saw when reading CSV files.

Here’s an example using trip data from yellow cabs in New York City:

trips =
trips

pl.read_parquet("data/taxi/yellow_tripdata_*.parquet")

Reading Parquet

67

shape: (39_656_098, 19)

I T T T T 1
| vendorID | tpep_pickup_datetime | .. | congestion_surcharge | airport_fee |
| - | - |- | --- |
| i64 | datetime[ns] | | fea | fe4 |
L 1 1 1 1 1
) T T T T 1
1	2022-01-01 00:35:40	..	2.5	0.0
1	2022-01-01 00:33:43	..	0.0	e.0
2	2022-01-01 00:53:21	..	0.0	0.0
2	2022-01-01 00:25:21	..	2.5	0.0
2	2022-01-01 00:36:48	..	2.5	0.0
..	..	.].	.	
2	2022-12-31 23:46:00	..	null	null
2	2022-12-31 23:13:24	..	null	null
2	2022-12-31 23:00:49	..	null	null
1	2022-12-31 23:02:50	..	null	null
2	2022-12-31 23:00:15	..	null	null
L | | | 1 |

On our modest laptops, reading nearly 40 million rows with
pl.read_parquet() takes only about 5 seconds.

Table 4-3 lists some commonly used arguments for reading Parquet files.

Table 4-3. Common arguments for the function pl.read_parquet()

Argument Description

source Path to a file, or a file-like object. If the path is a directory, files in that directory will all be read. If
fsspecisinstalled, it will be used to open remote files.

columns Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

N_rows Stop reading from parquet file after reading n_rows. Only valid when use_pyarrow=False.

use_pyar Use pyarrow instead of the Rust native parquet reader. The pyarrow reader is more stable (default:

row False).

Parquet’s speed and robustness make it, in our humble opinion, the best file format

when working with DataFrames. You'll be seeing a lot more of it in the rest of this
book.

Reading JSON and NDJSON

In this section we discuss how to read JavaScript Object Notation (JSON), and its
cousin Newline Delimited JSON (NDJSON).

68 | Chapter4: Reading and Writing Data

JSON

JSON is a text format that is easy for humans to read and write, and easy for
machines to parse and generate. Unlike CSV and Excel, JSON can contain nested data
structures. This flexibility makes it a popular choice for APIs, NoSQL databases, and
configuration files.

Let’s look at the raw contents of data/pokedex.json using the command-line tool cat:

$ cat data/pokedex. json

{
"pokemon": [{

"id": 1,

"num": "001",

"name": "Bulbasaur",

"img": "http://www.serebii.net/pokemongo/pokemon/001.png",

"type": [

"Grass",
"Poison"

1,

"height": "0.71 m",

"weight": "6.9 kg",

"candy": "Bulbasaur Candy",

"candy_count": 25,

"egg": "2 km",

"spawn_chance": 0.69,

"avg_spawns": 69,

"spawn_time": "20:00",

"multipliers": [1.58],

"weaknesses": [
"Fire",

"Ice",
"Flying",
"Psychic"

1,

"next_evolution": [{
"num": "002",
"name": "Ivysaur"

1L {

"num": "003",
"name": "Venusaur"
H
b {

.. with 4053 more lines

This JSON file starts and ends with a curly brace, meaning that the entire file is one
JSON object. Those curly braces are precisely what allows JSON to be highly nested.

The object has one key pokemon, which contains a list of objects. The first 33 lines
show also the first Pokemon object, namely Bulbasaur. This object, in turn, has some

Reading JSON and NDJSON | 69

keys that contain other objects. Again, this flexibility has many advantages, but as
we'll see next, also poses some challenges when reading it with Polars.

So let’s see what happens when we read this JSON file into a Polars DataFrame:

pokedex = pl.read_json("data/pokedex.json")
pokedex

shape: (1, 1)

pokemon

1
|
|

list[struct[17]] |
:
|
I

[{1,"001","Bulbasaur","http://www.serebii.net/pokemongo/pokemon/001.png",["G
rass", "Poison"],"0.71 m","6.9 kg","Bulbasaur Candy","2 km",0.69,69.0,"20:0..

Notice how everything is read as a single value? That’s because the JSON object has
only one key called pokemon whose value is a list of objects. Polars doesn’t make any
assumptions as how to flatten a nested structure into a rectangular shape.

Luckily, Polars offers two methods to flatten the data manually: df .explode(), which
is used to turn every item in a list into a new row and df.unnest(), which is used to
turn every key of an object into a new column. For now, let’s flatten the Pokedex to
some extent:

(

pokedex.explode("pokemon")

.unnest("pokemon")

.select("id", "name", "type", "height", "weight")
)
shape: (151, 5)
I T I T T 1
| id | name | type | height | weight |
. | - (S R
| 164 | str | list[str] | str | str
l } l : l l
1	Bulbasaur	["Grass", "Poison"]	.71 m	6.9 kg
2	Ivysaur	["Grass", "Poison"]	©.99 m	13.0 kg
3	venusaur	["Grass", "Poison"]	2.61 m	100.0 kg
4	charmander	["Fire"]	.61 m	8.5 kg
5	charmeleon	["Fire"]	1.09 m	19.0 kg
147	Dratini	["Dbragon"]	1.80 m	3.3 kg
148	Dragonair	["Dragon"]	3.99 m	16.5 kg
149	Dragonite	["Dragon", "Flying"]	2.21 m	210.0 kg
150	Mewtwo	["Psychic"]	2.01 m	122.0 kg
151	Mew	["Psychic"]	.41 m	4.0 kg
L ! L 1 ! |

70 | Chapter4: Reading and Writing Data

Table 4-4 lists some commonly used arguments for reading JSON and NDJSON,
which we cover next.

Table 4-4. Common arguments for the functions pl.read_json() and pl.read_ndjson()

Argument Description

source Path to a file or a file-like object.

schema The DataFrame schema may be declared in several ways: (1) As a dictionairy of {name: type}
pairs; if type is None, it will be auto-inferred. (2) As a list of column names; in this case types are
automatically inferred. (3) As a list of (name, type) pairs; this is equivalent to the dictionary form.

schema_over Support type specification or override of one or more columns; note that any types inferred from the
rides schema param will be overridden. underlying data, the names given here will overwrite them.

NDJSON

NDJSON is a convenient format for storing or streaming structured data to be
processed one record at a time. It’s essentially a collection of JSON objects, separated
by newline characters.

Each line in an NDJSON dataset is a valid JSON object, but the file as a whole is not a
valid JSON array because the newline characters are not part of the JSON syntax. This
format is beneficial because it allows you to add to the dataset easily and, read the
data efficiently, line by line, which can be particularly useful in streaming scenarios or
when dealing with large datasets that cannot fit into memory all at once. NDJSON is
used in settings from log files to RESTful APIs.

We've prepared data/wikimedia.ndjson by listening to the stream of the Wikimedia
API for a while and slightly cleaning it up. Here are the first 5 lines of that file:

$ cat data/wikimedia.ndjson

{"$schema":" /mediawiki/recentchange/1.0.0","meta" :{"uri":"https://en.wikipedia...
{"$schema":" /mediawiki/recentchange/1.0.0","meta":{"uri":"https://en.wikipedia...
{"$schema":" /mediawiki/recentchange/1.0.0","meta" :{"uri":"https://en.wikipedia...
{"$schema":" /mediawiki/recentchange/1.0.0","meta": {"uri":"https://en.wikipedia...
{"$schema":" /mediawiki/recentchange/1.0.0","meta" :{"uri":"https://en.wikipedia...

.. with 95 more lines
Again, every line is a single JSON object. Let’s have a closer look at the first one:

from import loads
from import pprint

with open("data/wikimedia.ndjson") as f:
pprint(loads(f.readline()))

{'Sschema': '/mediawiki/recentchange/1.0.0',
'bot': False,
'comment': '/* League champions, runners-up and play-off finalists */',

'id': 1659529639,

Reading JSONand NDJSON | 71

"length': {'new': 91166, 'old': 91108},
'meta': {'domain': 'en.wikipedia.org',
'dt': '2023-07-29T07:51:39Z',
'id': '0416300b-980c-45bb-b0a2-c9d7a9e2b7eb"',
'offset': 4820784717,
'partition': 0,
'request_1d': 'ea0541fb-4e72-4fc3-82f0-6c26651b2043",
'stream': 'mediawiki.recentchange',
'topic': 'eqiad.mediawiki.recentchange',
'uri': 'https://en.wikipedia.org/wiki/EFL_Championship'},
'minor': False,
'namespace': 0,
"notify_url': 'https://en.wikipedia.org/w/index.php?diff=1167689309&01ldid=1166..
'parsedcomment': '<a '
"href="/wiki/EFL_Championship#League_champions,_runners-up_an..
"title="EFL Championship">+\u200eLeague champions,
'runners-up and play-off finalists',
'revision': {'new': 1167689309, 'old': 1166824248},

'server_name': 'en.wikipedia.org',
'server_script_path': '/w',
'server_url': 'https://en.wikipedia.org',

"timestamp': 1690617099,

"title': 'EFL Championship',

"title_url': 'https://en.wikipedia.org/wiki/EFL_Championship',

"type': 'edit',

'user': '87.12.215.232',

'wiki': 'enwiki'}
Notice that this JSON object is slightly nested. Three keys, namely length, meta, and
revision, have multiple keys and values. Let’s see how Polars loads this data using the
pl.read_ndjson() function:

wikimedia = pl.read_ndjson("data/wikimedia.ndjson")
wikimedia

shape: (100, 20)

I T T T I 1
| $schema | meta | .. | wiki | parsedcomment |
| --- | --- [-] - |
| str | struct[9] | | str | str

i : = : :
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	<..
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	<..
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	Nominated for dele..
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	Rescuing 1 sources..
..	.			..
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	<..
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	Ce
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	
/mediawiki/recentc..	{"https://en.wikip..	..	enwiki	<..
1 I L 1 |

72 | Chapter4: Reading and Writing Data

Just as with the Pokedex, we can unnest() columns to turn the keys into new

columns.

(

wikimedia.rename({"id": "edit_id"})
.unnest("meta")
.select("timestamp", "title", "user", "comment")

)

shape: (100, 4)

T T T T 1
| timestamp | title | user | comment

| - | - | - | - |
| i64 | str | str | str

L 1 1 1 1
I 1 1 T 1
| 1690617099 | EFL Championship | 87.12.215.232 | /* League champtio..

1690617162	Lim Sang-choon	Preferwiki	
1690617104	Higher	ss112	/* Albums */ add
1690617104	International Pok..	Piotrus	Nominated for del..
1690617105	Abdul Hamid Khan ..	InternetArchiveBo..	Rescuing 1 source..
..
1690617238	Havering Resident..	MRSC	/* 2018 election ..
1690617235	Olha Kharlan	2603:7000:2101:AA..	Ce
1690617238	Mukim Kota Batu	Pangalau	
1690617239	User:IDK1213safas..	94.101.29.27	
1690617234	List of bus route..	Pedroperezhumbert..	/* Non-TfL bus ro..
L I I I I

Note

est() fails, complaining about duplicate column names.

Other File Formats

that we need to rename the id column to edit_1id because otherwise df.unn

Polars also supports the formats Arrow IPC (Feather version 2), Apache Avro,
Delta lake tables, and PyArrow datasets. For these formats, use the pl.read_ipc(),
pl.read_avro(), pl.read_delta, and pl.scan_pyarrow_dataset() functions,
respectively.

If you have a file that’s not supported by Polars, then perhaps Pandas can lend a
hand. Pandas has been around for over 13 years, so it’s not surprising that it supports
more formats. You can convert a Pandas DataFrame to a Polars DataFrame using
pl.from_pandas(). Here’s an example of reading a table from an HTML page:

import as

url = "https://en.wikipedia.org/wiki/List_of_Latin_abbreviations"
pl.from_pandas(pd.read_html(url)[0])
shape: (62, 4)

T T T T 1
| abbreviation | Latin | translation | usage and notes

Other File Formats | 73

| - | | | - |
| str | str | str | str |
L | 1 1]
I T 1 T 1
A.D	anno Domini	"in the year of t..	Used to label or ..
A.I	ad interim	"temporarily”	Used in business ..
a.m.	ante meridiem	"before midday"[1..	Used on the twelv..
ca./c	circa	"around", "about"..	Used with dates t..
cap.	capitulus	"chapter"	Used before a cha..
.
s.o0.s	si opus sit	"if there is need..	A prescription in..
sic	sic erat scriptum	"thus it was writ..	Often used when c..
stat	statim	"immediately"	often used in med..
viz	videlicet	"namely", "to wit..	In contradistinct..
vs. v	versus	"against"	Sometimes is not ..
L L I L I

Besides HTML, Pandas (not Polars) offers support for reading Feather, Fixed-Width
Text Files, HDF5, ORC, SAS, SPSS, Stata, XLS, XML, the local clipboard, and various
spreadsheet formats. Some of these formats require an additional package to be
installed. For instance, the HTML example above requires the 1xml package. See the
IO Tools section in the Pandas User Guide for more information.

Querying Databases

Polars provides a convenient way to interface with relational databases using the
pl.read_database() function. This function allows you to execute SQL queries
directly and retrieve the results as a DataFrame. Polars supports retrieving data from
various relational databases, including Postgres, MsSQL, MySQL, Oracle, SQLite, and

BigQuery.

The pl.read_database() function needs an SQL query and a connection string. The
connection string allows you to specify the database’s type, its location, and, if needed,
your credentials. For example, the connection string to a Postgres database follows
the pattern: postgres://username:password@server:port/database.

A database usually runs somewhere else (or at least in a separate process) and usually
requires credentials. A SQlite database, however, is just a single local file. So, to keep
things easy for ourselves, we're going to use a SQLite database to demonstrate how
Polars can query databases. The process is the same for the other types of databases,
except that you need to specify a different connection string and perhaps use a
different SQL dialect.

Were using the Sakila database, a sample database originally developed by the
MySQL development team and ported to SQLite by Bradley Grant. The following
query selects 10 imaginary film titles, along with a category, rating, and length for
each:

74 | Chapter4: Reading and Writing Data

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://github.com/bradleygrant/sakila-sqlite3

pl.read_database_uri(
query="""
SELECT
f.film_id,
.title,
.name AS category,
.rating,

.length / 60.0 AS length

- —h 0 —h

FROM

film AS f,

film_category AS fc,

category AS c
WHERE

fc.film_1d = f.film_1id

AND fc.category_id = c.category_1id
LIMIT 10

nun

uri="sqlite:::data/sakila.db",

)

shape: (10, 5)

I T T T T 1
| film_id | title | category | rating | length |
RTINS | - I T
| 164 | str | str | str | f64 |
L 1 | | 1]
I 1 T T 1 1
1	ACADEMY DINOSAUR	Documentary	PG	1.433333
2	ACE GOLDFINGER	Horror	G	0.8
3	ADAPTATION HOLES	Documentary	NC-17	©.833333
4	AFFAIR PREJUDICE	Horror	G	1.95
5	AFRICAN EGG	Family	G	2.166667
6	AGENT TRUMAN	Foreign	PG	2.816667
7	AIRPLANE SIERRA	Comedy	PG-13	1.033333
8	AIRPORT POLLOCK	Horror	R	0.9
9	ALABAMA DEVIL	Horror	PG-13	1.9
10	ALADDIN CALENDAR	Sports	NC-17	1.05
L | | | | |

If SQL is not your cup of tea but you still need to read from a database, you can
use one or more SELECT * FROM table queries to select everything and continue in
Polars. The following three SQL queries and Polars code produce the same result as
the single SQL query above:

db = "sqlite:::data/sakila.db"

films = pl.read_database_uri("SELECT * FROM film", db)

film_categories = pl.read_database_uri("SELECT * FROM film_category", db)
categories = pl.read_database_uri("SELECT * FROM category", db)

(
films. join(film_categories, on="film_id", suffix="_fc")
.join(categories, on="category_1id", suffix="_c"
.select(
"film_id",

Querying Databases | 75

"title",
pl.col("name").alias("category"),
"rating",

pl.col("length") / 60,

)
Jlimit(10)

)

shape: (10, 5)

I T T T T 1
| film_id | title | category | rating | length |
RS | - I T
| 164 | str | str | str | f64 |
L 1 | | |]
I 1 T T 1 1
1	ACADEMY DINOSAUR	Documentary	PG	1.433333
2	ACE GOLDFINGER	Horror	G	0.8
3	ADAPTATION HOLES	Documentary	NC-17	©.833333
4	AFFAIR PREJUDICE	Horror	G	1.95
5	AFRICAN EGG	Family	G	2.166667
6	AGENT TRUMAN	Foreign	PG	2.816667
7	AIRPLANE SIERRA	Comedy	PG-13	1.033333
8	AIRPORT POLLOCK	Horror	R	0.9
9	ALABAMA DEVIL	Horror	PG-13	1.9
10	ALADDIN CALENDAR	Sports	NC-17	1.05
L | | | | |

When you take this approach, consider how much data will be transferred. For a
better performance, it’s usually a good idea to let the database do as much work as
possible and select only the columns you need.

Writing Data

Python Polars offers a wide range of methods when it comes to writing data to a file.
Understanding the nuances of each format helps you to make an informed decision
tailored to your specific data needs.

(SV Format

One of the most popular choices for writing is the CSV format. CSV stands out for
its universal recognition and compatibility with a vast array of software and tools. To
save a DataFrame in this format, you can use the df .write_csv() method:

all_stocks.write_csv("data/all_stocks.csv")

Table 4-5 lists some frequently used arguments for writing CSV files.

Table 4-5. Common arguments for the df.write_csv() method

Argument Description

file File path to write the DataFrame to. If set to None (default), the output is returned as a string instead.

76 | Chapter4: Reading and Writing Data

Argument Description

has_header Whether to include a header (default: True).
separator Character to separate CSV fields (default: ,).
quote Character to use for quoting values (default: “*).

null_value String to represent missing values (default: empty string).

Since CSV is a text-based format, it’s easily readable by humans. However, as we've
seen, it does come with some challenges related to encoding, missing data, and
schema inference.

Excel Format

If youre looking to write data in a format familiar to many business users, the
Excel format is an optimal choice. The method df .write_excel("filename.xlsx")
accomplishes this:

all_stocks.write_excel("data/all_stocks.xlsx")

Table 4-6 lists some frequently used arguments for writing Excel files.

Table 4-6. Common arguments for the df.write_excel() method

Argument Description

worksheet Name of target worksheet (default: Sheet1).
position Table position in Excel notation (eg: “A1”), or a (row,col) integer tuple.

table_style A named Excel table style, such as “Table Style Medium 4”, or a dictionary of {"key" :value}
options containing one or more of the following keys: “style”, “first_column”, “last_column”,
“banded_columns, “banded_rows”.

column_widths A {colname:int} dict orsingle integer that sets (or overrides if auto fitting) table column widths in
integer pixel units. If given as an integer the same value is used for all table columns.

Excel’s primary advantage lies in its support for multisheet workbooks and its capa-
bility to incorporate styling and formulas directly into the data. Nevertheless, it is a
binary format, which means direct human readability is compromised. Moreover, it’s
not the best choice for very large datasets, as performance can be an issue.

Parquet Format

If your DataFrame is large and you need an efficient read/write mechanism, the
Parquet format is ideal. Using the df .write_parquet("filename.parquet") method,
you can save data in this columnar storage format:

all_stocks.write_parquet("data/all_stocks.parquet")

Table 4-7 lists some frequently used arguments for writing Parquet files.

Writing Data | 77

Table 4-7. Common arguments for the df.write_parquet() method

Argument Description

file File path to which the DataFrame should be written.

compression Choose zstd for good compression performance. Choose 1z4 for fast compression and
decompression. Choose snappy for more backwards compatibility guarantees when you deal with
older parquet readers.

compres The level of compression to use. Higher compression means smaller files on disk.

sion_level

Parquet is designed for efficiency; it compresses data for optimal storage and sup-
ports intricate nested data structures. Furthermore, it retains the schema information,
allowing for consistent data retrieval. However, Parquet isn't as universally recognized
as CSV or Excel, so you might need specific tools or libraries to read the data.

Other Considerations

Polars also supports writing to other formats like Avro and JSON. When determining
the appropriate format, it’s essential to weigh factors like the data’s intended use,
compatibility with other software, the size of the dataset, and the intricacy of the
required data structures.

Conclusion

Throughout this chapter, we've explored Polars’ capabilities for reading and writing
data. We've detailed how to interact efficiently with various file formats, from CSV
and Excel to Parquet. Incorporating globbing techniques has enabled you to effec-
tively handle multiple files. We've addressed the nuances of correctly reading missing
values and the intricacies involved in managing different character encodings. With
these functions under your belt, you should have no problem applying the upcoming
topics and code samples to your own data.

78 | (Chapter4: Reading and Writing Data

CHAPTER 5
Beginning Expressions

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

The goal of this chapter is to introduce expressions, which are what makes the Polars
API so powerful and elegant. This chapter forms the basis for the remaining chapters
of Part II, where we go into more detail regarding specific expressions and how to use
them.

Polars Expressions versus Regular Expressions

Polars expressions should not be confused with regular expres-
\ sions. A regular expression, or regex, is a sequence of charac-
ters that is used to match text. For example, the regex [Pp](ol|
and)ar?s matches both pandas and Polars, but it doesn’t match
panda or polaris. A few Polars methods do accept regexes, such
as pl.col() for selecting columns and Expr.str.replace() for
replacing values. The interactive website RegExr by Grant Skinner
and the book Introducing Regular Expressions by Michael FitzGer-
ald are useful resources for learning more about regexes.

79

mailto:sgrey@oreilly.com
https://regexr.com

Expressions, in Polars, are reusable building blocks that enable you to perform many
data-wrangling tasks, including selecting existing columns, creating new columns,
filtering rows on a condition, and calculating aggregations. In short, they pop up
everywhere.

Expressions have so much to offer that we've split it into three chapters as pictured
in Figure 5-1. In Chapter 13 we cover various methods that are accessible through
so-called namespaces (explained in the next section).

=L Examples
)

Fundamentals (Chapter 8)J » Definition

=L Creating

%{ Element-Wise Operations}

i

—#{ Nonreducing Series-Wise Operations]

Expanding (Chapter 9)

N : AT ;]
—> Reducing Series-Wise Operations

(

=L Extending Operations }

Expressions

Logical Operations

P Bitwise Operations
(

=l Comparison Operations]

Combining (Chapter 10)]

(

;L Arithmetic Operations]

:[Methods Under Namespaces (Chapter 13)}

Figure 5-1. The many expression methods are organized into three chapters
In this chapter you'll learn:

o What expressions are
o Where expressions can be used
» How to create expressions from existing columns

» How to create expressions from literal values

80 | Chapter5:Beginning Expressions

» How to create expressions from ranges
» How to rename expressions

o Why expressions are the recommended way of working with Polars

Afterwards, in Chapter 6 and Chapter 7 you’ll learn how to expand expressions and
how to combine them, respectively.

Methods and Namespaces

The pl.Expr class, which represents a Polars expression, has about 350 methods(!) at
the time of writing. More than a hundred expression methods are accessible through
namespaces: groups of methods that each deal with a particular data type.

For example, the Expr.str namespace has methods for working with strings, the
Expr.dt namespace has methods for working with temporal values, and the Expr.cat
namespace has methods for working with categories. These types and their associated
methods are covered in Chapter 10. In this chapter we'll focus on the fundamentals
and more general methods of expressions.

Expressions by Example

Expressions really shine when they’re being applied. That may sound obvious, but
expressions by themselves don't do anything. They’re lazy, just like LazyFrames. In
practice, expressions are applied by passing them as arguments to some DataFrame
or LazyFrame method.

Before we dive into the details of expressions, were going to demonstrate expressions
through some examples:

+ Selecting columns with the method df . select()

o Creating new columns with the method df .with_columns()

o Filtering rows with the method df.filter()

o Aggregating with the method df.group_by()

o Sorting rows with the method df.sort()
As youre going through these examples, keep in mind that it's not the methods but

the expressions that matter most. Each method will be covered in more details in its
own chapter.

We'll use the following DataFrame about 10 delicious fruits' from around the world:

1 Yes, avocado is actually a fruit—a large single-seeded berry, to be precise.

Expressions by Example | 81

The methods we demonstrate below are also available for LazyFrames, but since were
only dealing with 10 rows, a DataFrame will do just fine. And since we don’t have to
materialize the result with the method 1f.collect(), it keeps the examples shorter.

Selecting Columns with Expressions

You can select one or more existing columns from a DataFrame using the method
df.select(). Any columns not mentioned in the expressions are dropped from the
output. The following code snippet selects the fruit’s name, origin, and weight (in

import

as

fruit = pl.read_csv("data/fruit.csv")

fruit

shape: (10, 5)

T T T T T 1
| name | weight | color | is_round | origin |
| - [t D ok |
| str | 164 | str | bool | str

L 1 1 1 1 1
) T T T T 1
Avocado	200	green	false	south America
Banana	120	vellow	false	Asia
Blueberry	1	blue	false	North America
Ccantaloupe	2500	orange	true	Africa
cranberry	2	red	false	North America
Elderberry	1	black	false	Europe

| orange | 130 | orange | true | Asia

| Papaya | 1000 | orange | false | South America |
| Peach | 150 | orange | true | Asia

| Watermelon | 5000 | green | true | Africa |
L I L I I |

kilograms):

fruit.select(

pl.col("name"),

o

pl.col("~.*or.*$"), (2]

pl.col("weight") / 1000, ©

"{s_round"
)
shape: (10, 5)
T T T T T 1
| name | color | origin | weight | is_round |
| [b [R
| str | str | str | fo4 | bool |
i : : : : i
| Avocado | green | South America | 0.2 | false |
| Banana | yellow | Asia | 0.1 | false
| Blueberry | blue | North America | 0.001 | false |
| cantaloupe | orange | Africa | 2.5 | true
| Cranberry | red | North America | 0.002 | false |

82

Chapter 5: Beginning Expressions

Elderberry	black	Europe	8.001	false
orange	orange	Asia	8.13	true
Papaya	orange	South America	1.0	false
Peach	orange	Asia	8.15	true
watermelon	green	Africa	5.0	true
L I I I i

© The function pl.col() is the most common way to start an expression. The
argument is a string that refers to an existing column—in this case name.

® pl.col() also accepts regular expressions as arguments. This regular expression
matches the two columns color and origin, because their names both contain
the string “or”.

© You can perform arithmetic (addition, subtraction, multiplication, and division)
on expressions using the operators youre already familiar with. (We'll discuss
performing arithmetic further in Chapter 7.) Notice how Polars automatically
casts the weight column from an integer (164) to a float (f64) to allow for
fractional weights.

O The method df.select() also accepts strings to refer to existing columns. This
might be convenient because you have to type less. However, since a string is not
an expression, you won't be able to apply any arithmetic or other operations to it.

Creating New Columns with Expressions

With the method df.with_columns() you can create one or more columns, either
based on existing columns or from scratch. In this example we add two columns to
our fruit DataFrame: one that indicates whether a fruit is a fruit (which is obviously
always True) and one that indicates whether a fruit is a berry (based on its name):

fruit.with_columns(
pl.lit(True).alias("is_fruit"), @
pl.col("name").str.ends_with("berry").alias("is_berry") (2]

)

shape: (10, 7)

T T T T T T T 1
| name | weight | color | is_round | origin | is_fruit | is_berry |
| - RSN IS e [e
| str | 164 | str | bool | str | bool | bool |
L] 1] 1 1 1 1
I 1 T 1 T T T 1
Avocado	200	green	false	South Amer..	true	false
Banana	120	yellow	false	Asia	true	false
Blueberry	1	blue	false	North Amer..	true	true
cantaloupe	2500	orange	true	Africa	true	false
Cranberry	2	red	false	North Amer..	true	true
Elderberry	1	black	false	Europe	true	true

Expressions by Example | 83

orange	130	orange	true	Asia	true	false
Papaya	1600	orange	false	South Amer..	true	false
Peach	150	orange	true	Asia	true	false
Wwatermelon	5000	green	true	Africa	true	false
L I L I I L L |

O With the function pl.1lit(), you start an expression based on a literal value,
such as True. The method Expr.alias() allows you to name new columns and
rename existing columns.

©® The Expr.str.ends_with() method is one the many string methods in the str
namespace. As mentioned, these will be covered in Chapter 9.

Filtering Rows with Expressions

To filter rows based on an expression, use the method df.filter(). Only rows for
which the expression evaluates to True are kept. This example only keeps fruits that
are round and weigh more than 1,000 grams:
fruit.filter(
pl.col("is_round") & (1)
(pl.col("weight") > 1000) (2]
)

shape: (2, 5)

I I T T T 1
| name | weight | color | is_round | origin |
| - (S oy R Db
| str | 164 | str | bool | str |
i i : : : i
| cantaloupe | 2500 | orange | true | Africa |
| watermelon | 5000 | green | true | Africa |
L 1 1 1 1]

© Here we combine two expressions using the logical AND (&) operator. The out-
put is True if and only if both expressions are True. (We discuss logical operators
in Chapter 7.)

@ Existing columns can be turned into Boolean ones using comparison operators,
such as the greater-than (>) operator.

Aggregating with Expressions

Aggregation typically involves creating groups of rows, then summarizing each group
into one row. This example creates groups based on the last part of the origin
column, then calculates the number of fruits per group and their average weight.
Note that it uses expressions in two different places: in determining the groups, and
then in summarizing the groups:

84 | Chapter5:Beginning Expressions

fruit.group_by(
pl.col("origin").str.split(" ").list.last() (1)

)-agg(
pl.count(), (2]

pl.col("weight").mean().alias("average_weight") (3]
)

shape: (4, 3)

I T T 1
| origin | count | average_weight |
IEEEI R |
| str | u32 | fe4 |
i i : :
| America | 4 | 300.75 |
| Europe | 1 | 1.0 |
| Asia | 3 | 133.333333

| Africa | 2 | 3750.0

L 1 1]

© Each unique value of this expression (the last part of the origin column) leads to
one group.

® The expression created by the function pl.count() returns the number of rows
in the group.

© The method Expr.mean() is one of many that summarize data—turning multiple
values into one.

We don't want to get ahead of ourselves too much, but we're
pretty excited to let you that multiple expressions are executed
in parallel—as is the case with both the aggregation and selection
examples. This is one of the reasons why Polars is so blazingly fast.

Sorting Rows with Expressions

To Rearrange a DataFrame based on one or more columns, use the method
df.sort(). This (arguably contrived) example sorts the fruits based on the length
of their names:

fruit.sort(
pl.col("name").str.len_bytes(), (1]
descending=True

)

shape: (10, 5)

T T T T T 1
| name | weight | color | is_round | origin |
| (S ey R el |
| str | 164 | str | bool | str |

Expressions by Example | 85

L 1 | 1 1]
I 1 T 1 1 1
Ccantaloupe	2500	orange	true	Africa
Elderberry	1	black	false	Europe
Wwatermelon	5000	green	true	Africa
Blueberry	1	blue	false	North America
Cranberry	2	red	false	North America
Avocado	200	green	false	south America
Banana	120	vellow	false	Asia
orange	130	orange	true	Asia
Papaya	1000	orange	false	South America
Peach	150	orange	true	Asia
L I I I I i

© You can sort on an expression that’s not actually present in the fruits Data-
Frame. (While the names are present, their lengths are not.) It's not necessary to
explicitly add a new column if you only want to use it for sorting.

® For ascending order (the default), remove this argument or set it to False.

What Exactly Is an Expression?

Now that you've seen some concrete examples of expressions and how they can be
applied, it’s time to define what exactly an expression is.

Expression Definition

An expression is a tree of operations that describe how to construct one or more
Series.

Let’s break this definition down into five parts:

Series
Recall from Chapter 2 that a Series is an array of values with the same data type,
such as pl.Float64 for 64-bit floats or pl.String for strings. You can think of a
Series as a column in a DataFrame, but keep in mind that a Series can exist on its
own and is therefore not always part of a DataFrame.

Tree of operations
An expression can consist of: a single operation, multiple operations in a linear
sequence, and multiple operations organized in a tree-like structure.

Figure 5-2 shows three example expressions. If these expressions were to be
executed they would produce three columns with the values 7, 12, and 6, respec-
tively. Note that the third diagram in Figure 5-2 is indeed tree-like.

86 | Chapter 5:Beginning Expressions

pl.lit(7) pl.lit(7) pl.lit(7) pl.lit(1)

l l l

.add(5) .add(5) .add(1)

L i

Figure 5-2. An expression is a tree of operations

Generally speaking, all expressions are tree-like, but they don’t necessarily have
branches or parents.

Describe
An expression is just a description; it doesn’t construct any Series by itself nor
does it have a method to execute itself. Expressions are only executed when
passed as arguments to functions such as pl.select() and methods such as
df.group_by(). Then one or more Series is constructed.

If you think of an expression as a recipe, then the operations would the steps, and
the functions and methods such the cooks.

Construct

You don’t always see the Series that’s being constructed. Whether the constructed
Series becomes (or become) part of the DataFrame will depend on the function
or method executing the expression. A example of where this is not the case
is the function pl.filter(). The constructed Series is only used to determine
which rows of the DataFrame should be kept; it doesn’t become a new column.
The word construct should also be taken with a grain of salt: if the expression
only consists of a single operation that references an existing column in a Data-
Frame, then no Series is actually being constructed.

One or more
A single expression can describe the construction of more than one Series.
For example, the function pl.all() refers to all Series in a DataFrame. The
expression pl.all().mul(10).name.suffix("_times_10") multiplies the values
in all existing Series by 10 and adds “_times_10” to their names:

What Exactly Is an Expression? | 87

pl.DataFrame({"a": [1, 2, 3], "b": [0.4, 0.5, 0.6]})
.with_columns(pl.all().mul(10).name.suffix("_times_10"))

)

shape: (3, 4)

I T T T 1
| a | b | a_times_10 | b_times_10 |
SN | - |
| 164 | fo4 | i64 | fe4 |
i : : : :
1] 0.4 10	4.0	
2	oe.5] 20	5.0
3] 0.6 30	6.0	
L 1 | | |

With the method Expr.meta.has_multiple_outputs() you can check whether
an expression describes the potential construction of multiple Series:

pl.all().mul(10).name.suffix("_times_10").meta.has_multiple_outputs()
True

Whether multiple Series are actually constructed depends on the DataFrame to
which it’s applied. If the DataFrame only has one Series to begin with, pl.all()
will only construct one Series.

Properties of Expressions

It’s one thing to know the definition of expressions; it's another thing to understand
how they work in practice. Here are a couple of properties of expressions worth
mentioning:

Lazy

Expressions are lazy: By themselves, they don’t do anything. Perhaps being lazy is
their most important property, because without it, they wouldn’t have the other
five properties were about to mention.

Function and data dependent

Expressions depend on both the function that executes them and the DataFrame
(or LazyFrame) onto which they are applied. The function determines what
happens to the Series being constructed; the DataFrame determines the type and
the length of the Series.

To demonstrate, let’s pass the same expression (' ‘is_orange'") to three different
functions (methods), shown here alongside their output:

is_orange = (pl.col("color") == "orange").alias("is_orange")

fruit.with_columns(is_orange)

88

| Chapter 5: Beginning Expressions

shape: (10, 6)

T T T T T T 1
| name | weight | color | is_round | origin | is_orange |
- [t s ok o
| str | 164 | str | bool | str | bool |
1 1 1 1 1 1]
I T T T T T 1
| Avocado | 200 | green | false | south America | false |
| Banana | 120 | vellow | false | Asia | false [
| Blueberry | 1 | blue | false | North America | false |
| cantaloupe | 2500 | orange | true | Africa | true [
| cranberry | 2 | red | false | North America | false |
| Elderberry | 1 | black | false | Europe | false [
| orange | 130 | orange | true | Asia | true |
| Papaya | 1600 | orange | false | South America | true [
| Peach | 150 | orange | true | Asia | true |
| Watermelon | 5000 | green | true | Africa | false [
1 I I I I I I
fruit.filter(is_orange)

shape: (4, 5)

T T T T T 1

| name | weight | color | is_round | origin |

| --- [=== - | --- | --- |

| str | 164 | str | bool | str |

1 1 1 1 1 1

I T T T T 1

| cantaloupe | 2500 | orange | true | Africa |

| orange | 130 | orange | true | Asia |

| Papaya | 1600 | orange | false | south America |

| Peach | 150 | orange | true | Asia |

1 I I I I |

fruit.group_by(is_orange).len()
shape: (2, 2)

T
| is_orange

| len |
[
| bool | u32 |
i : :
| false | |
| true | |
L L I

The key take away is that you’ll use the same syntax to accomplish different tasks.

Which ties into the next property of expressions: reusability.

Reusable

Expressions are Python objects. In the previous example, we created the expres-
sion object is_orange and reused it by passing it to different methods of the
fruit DataFrame. Taking this further, there’s nothing stopping us from using the

same expression on a completely different DataFrame:

What Exactly Is an Expression?

flowers = pl.DataFrame({
"name": ["Tiger lily", "Blue flag", "African marigold"],
"latin": ["Lilium columbianum", "Iris versicolor", "Tagetes erecta"],
"color": ["orange", "purple", "orange"]

b

flowers.filter(is_orange)

shape: (2, 3)

T T T 1
| name | latin | color |
o -]
| str | str | str |
: : : :
| Tiger 1ily | Lilium columbianum | orange |
| African marigold | Tagetes erecta | orange |
L I L I

Efficient
Because expressions are lazy you can optimize them before you executed them.
Polars will minimize the number of computations required to construct the
Series by analyzing the operations in the expression. Moreover, when a function
is given multiple expressions, they are executed in parallel.

To summarize, expressions have many favorable properties. Let’s continue with creat-
ing expressions.

Creating Expressions

Each expression starts with a first operation. Generally speaking, a new expression is
created using a function that doesn’t depend on another expression. Once you have
an expression, you can continue to build on it with many methods and combine it
with other expressions using inline operators (discussed in the next two chapters).
Lets look at the various ways in which we can create one, starting with existing
columns.

From Existing Columns

The most common way to create an expression is to reference one or more existing
columns in the DataFrame. After all, most often you want to transform the data you
already have. This can be done with the function pl.col(), which accepts column
names, regular expressions, and data types. Here are a few examples.

For demonstration purposes, we execute the expressions using the method
df.select() and get the list of column names via the df.columns attribute. You
can reference a particular column by passing its name:

fruit.select(pl.col("color")).columns

90 | Chapter5:Beginning Expressions

['color']

If the DataFrame has no column with that particular name, Polars will throw an
error:

fruit.select(pl.col("is_smelly")).columns

ColumnNotFoundError: is_smelly

Error originated just after this operation:
DF ["name", "weight", "color", "is_round"]; PROJECT */5 COLUMNS; SELECTION: "Non
o

Regular expressions are especially useful for referencing multiple columns whose
names have a common pattern. To do so, the regular expression has to start with a
caret (*) and end with a dollar sign ($):

fruit.select(pl.col("~.*or.*$")).columns
['color', 'origin']
With pl.col("*") or the convenient alias pl.all() you can reference all columns:
fruit.select(pl.all()).columns
['name', 'weight', 'color', 'is_round', 'origin']
You can reference all columns with a particular data type (for example, pl.String for
strings):
fruit.select(pl.col(pl.String)).columns
['name', 'color', 'origin']
You can give pl.col() multiple column names or data types:
fruit.select(pl.col(pl.Boolean, pl.Int64)).columns
['weilght', 'is_round']
Or you can pass them as a list, if that's more convenient:
fruit.select(pl.col(["name", "color"])).columns
['name', 'color']
However, you cannot mix column names and data types:
fruit.select(pl.col([pl.String, "is_round"])).columns

[

TypeError: argument 'dtypes': 'str' is not a Polars data type

Referencing Numeric Data Types

To reference all the columns containing numbers, you can use the constant
pl.NUMERIC_DTYPES, which has all the numerical data types:

Creating Expressions | 91

pl.NUMERIC_DTYPES

frozenset({Decimal,
Float32,
Float64,
Intie6,
Int32,
Int64,
Int8,
UIntile6,
UInt32,
UInt64,
UInt8})

You can use this constant directly in pl.col():

(
fruit

.with_columns((pl.col("weight") / 1000).alias("weight_kg"))
.select(pl.col(pl.NUMERIC_DTYPES))
.head()

)

shape: (5, 2)

weight | weight_kg

f64

i64

120
1
2500
2

oN oo
ouoerN
IS}
=

I
I
I
I
T
200 |
I
I
I
|

From Literal Values

To create a new expression based on some other Python value you can use the func-
tion pl.1it(). Lit is short for “literal”. The next few examples execute the expressions
using the pl.select() function, which starts with a new, empty DataFrame:

pl.select(pl.lit(42))

shape: (1, 1)
 —
| literal |
I
| 132 |

 —
1

| 42 I
L 1

92 | Chapter5:Beginning Expressions

Notice that the column name is literally 1iteral. You can give this column a better
name using the method Expr.alias():

pl.select(pl.lit(42).alias("answer"))

shape: (1, 1)
1
| answer |

| 132 |

| 42 |
(I

When you execute these expressions using the function pl.select(), the constructed
Series have only one value. However, when you execute the same expression to a
nonempty DataFrame, the length of the Series will be equal to the number of rows:

fruit.with_columns(pl.lit("Earth").alias("planet"))

shape: (10, 6)

T T T T T T 1
| name | weight | color | is_round | origin | planet |
| - [ISR e |
| str | 164 | str | bool | str | str |
L 1 1 1 1 1]
I 1 T T T 1 1
Avocado	200	green	false	South America	Earth
Banana	120	yellow	false	Asia	Earth
Blueberry	1	blue	false	North America	Earth
cantaloupe	2500	orange	true	Africa	Earth
cranberry	2	red	false	North America	Earth
Elderberry	1	black	false	Europe	Earth
orange	130	orange	true	Asia	Earth
Papaya	1000	orange	false	South America	Earth
Peach	150	orange	true	Asia	Earth
Watermelon	5000	green	true	Africa	Earth
L I L I I I |

As you can see, the value Earth is repeated such that the length of the Series planet

is equal to the number of rows in the DataFrame. Values are only repeated automati-

cally if you pass a single value to the function pl.1it(). When you pass more than

one value, but fewer values than there are rows, you get an error:
fruit.with_columns(pl.lit(pl.Series([False, True])).alias("row_is_even"))
ShapeError: unable to add a column of length 2 to a DataFrame of height 10

Also, the list of values [False, True] is first turned into a Series using the pl.Ser

ies() constructor. Otherwise, Polars will create a list column such that each row has
these two values:

fruit.with_columns(pl.lit([False, True]).alias("row_is_even"))

Creating Expressions | 93

shape: (10, 6)

T T T T T T 1
| name | weight | color | is_round | origin | row_is_even

| - [s ok | o |
| str | 164 | str | bool | str | list[bool]

L 1 1 1 1 1]
) T T T T T 1
Avocado	200	green	false	Ssouth America	[false, true]
Banana	120	vellow	false	Asia	[false, true]
.
Peach	150	orange	true	Asia	[false, true]
watermelon	5000	green	true	Africa	[false, true]
L I I I I I I

To repeat values explicitly, for a fixed number of times, you can use the
function pl.repeat(). The functions pl.zeros() and pl.ones() are aliases for
pl.repeat(0.0) and pl.repeat(1.0), respectively:
pl.select(
pl.repeat("ELllo", 3).alias("hello"),
pl.zeros(3),

pl.ones(3)
)

shape: (3, 3)

I T T 1
hello	zeros	ones
-- [-	---	
str	fea	fea
L 1 l		
I T T 1		
Ello	0.0	1.0
Ello	0.0	1.0
Ello	0.0	1.0
L | | |

Keep in mind that the length of each Series must be the same; otherwise you'll get an
error:

fruit.with_columns(pl.repeat("Earth", 9).alias("planet"))

ShapeError: unable to add a column of length 9 to a DataFrame of height 10

From Ranges
Polars offers a couple of convenient functions for creating ranges of integers, dates,

times, and datetimes. They are listed in Table 5-1.

Table 5-1. Functions for creating ranges

Function Description

pl.arange(..) A range of integers (alias of pL.int_range(..))
pl.date_range(..) A range of dates

94 | Chapter5:Beginning Expressions

pl.date_ranges(..) Each element is a range of dates
pl.datetime_range(..) Arange of datetimes
pl.datetime_ranges(..) Eachelementisa range of datetimes
pl.int_range(..) A range of integers
pl.int_ranges(..) Each element is a range of integers
pl.time_range(..) A range of times
pl.time_ranges(..) Each element is a range of times

The following example demonstrates the functions pl.int_range(), its alias
pl.arange(), and pl.int_ranges(). It also includes a sneak peek to the method
Expr.list.len(), which calculates the number of elements in each list in the
int_range column:

pl.select(

pl.int_range(0, 5).alias("start"),

pl.arange(0, 10, 2).pow(2).alias("end")
).with_columns(

pl.int_ranges("start", "end").alias("int_range")
).with_columns(

pl.col("int_range").list.len().alias("range_length")
)

shape: (5, 4)

I T T 1
| start | end | int_range | range_length |
[== |-] - [--- I
| 164 | f64 | list[i64] | u32 |
| : : : :
| o | 0.0 | [I | o I
1	4.0	[1, 2, 3]	3
2	16.0	[2, 3, .. 15]	14
3	36.0	[3, 4, ..35]	33
4	64.0	[4, 5, .. 63]	60
L | | | |

Note that the function pl.int_ranges() generates a Series where each element
is a list of integers. The functions pl.date_ranges, pl.datetime_ranges, and
pl.time_ranges() work similarly but then for dates, datetimes, and times, respec-
tively:

from import date

pl.select(
pl.date_range(date(1985, 10, 21), date(1985, 10, 26)).alias("start"),
pl.repeat(date(2021, 10, 21), 6).alias("end")

) .with_columns(

Creating Expressions | 95

pl.datetime_ranges("start", "end", interval="1h").alias('"range")

)
shape: (6, 3)

start end range
date date list[datetime[ps]]
1985-10-21 2021-10-21 [1985-10-21 00:00:00, 1985-10-21 01:00:00, ..

I T T 1
I I I I
| | | |
I I I I
L 1 l 1
) T T 1
I I I I
| 1985-10-22 | 2621-10-21 | [1985-10-22 00:00:00, 1985-10-22 01:00:00, .. |
I I I I
| | | |
I I I I
| | | |
L 1 1 |

1985-10-23 | 2021-10-21 | [1985-10-23 00:00:00, 1985-10-23 01:00:00, ..
1985-10-24 | 2021-10-21 | [1985-10-24 00:00:00, 1985-10-24 01:00:00, ..
1985-10-25 | 2021-10-21 | [1985-10-25 00:00:00, 1985-10-25 01:00:00, ..
1985-10-26 | 2021-10-21 | [1985-10-26 00:00:00, 1985-10-26 01:00:00, ..

In Chapter 9 we cover working with temporal data (such as dates and times) in more
detail.

Other Functions to Create Expressions

There are many function to create expressions. Unfortunately, we're not able to cover
all of them in this chapter. However, to give you an idea of the possibilities, we'll
briefly mention a couple of functions, what they do, and where we'll cover them in
more detail.

First, the function pl.count() is used, as the name implies, for counting the number
of rows. It's most often used when aggregating using the method df.group_by().
This is covered in Chapter 10.

Second, the function pl.element() represents a single element in a list. It is used
in combination with the method Expr.list.eval() to apply an expression to each
element in a list. We explain this is further detail in Chapter 9.

Finally, the function pl.sql_expr() is handy if you want to create an expression
using SQL.

Renaming Expressions

Renaming an expression—which eventually determines the name of the Series that
will be constructed—happens very often. There are various reasons why you would
want to rename an expression, including:

o To better express what the column is about
« To avoid duplicate column names

+ To clean up a column name

96 | Chapter5:Beginning Expressions

o To change the default column name

Good Names

Having good expression names is just as important as having good
variable names in general. They can drastically influence the qual-
ity of your code. We personally recommend using column names
that are all lowercase using underscores to separate words.

The most common method to change the name of an expression is Expr.alias().
Additional methods that are concerned with the name of an expression
are available within the Expr.name namespace (see Table 5-2). The meth-
ods Expr.name.map_fields(), Expr.name.prefix_fields(), and Expr.name.suf

fix_fields() can only be used when the data type of the expression is pl.Struct.

Table 5-2. Methods for renaming expressions

Method Description

Expr.alias(..) Rename the expression.

Expr.name.keep() Keep the original root name of the expression.
Expr.name.map(..) Rename the expression by mapping a function over the root name.
Expr.name.prefix(..) Add a prefix to the root column name of the expression.
Expr.name.suffix(..) Add a suffix to the root column name of the expression.

Expr.name.to_lowercase() Make the root column name lowercase.
Expr.name.to_uppercase() Make the root column name uppercase.
Expr.name.map_fields(..) Rename fields of a struct by mapping a function over the field name.
Expr.name.prefix_fields(..) Add a prefix to all fields names of a struct.

Expr.name.suffix_fields(..) Addasuffixto all fields names of a struct.

To illustrate, consider this small DataFrame with some arbitrary column names:

df = pl.DataFrame({"text": "value", "An integer": 5040, "BOOLEAN": True})
df

shape: (1, 3)

I T T 1
| text | An integer | BOOLEAN |
[|
| str | i64 | bool |
| : : :
| value | 5040 | true |
L | | |

We can change these column names with various methods:

Renaming Expressions |

97

df.select(
pl.col("text").name.to_uppercase(),
pl.col("An integer").alias("int"),
pl.col("BOOLEAN").name.to_lowercase(),

)

shape: (1, 3)

T T T 1
| TEXT | int | boolean |
[R B
| str | 164 | bool |
| : : :
| value | 5040 | true |
L L L I

Chaining Naming Operations

At the time of writing, Polars allows only one naming operation per
expression. So the following is not allowed:

df.select(

pl.all()

.name.to_lowercase()

.name.map(lambda s: s.replace(" ", "_"))
)

PanicException: no ‘rename_alias’ expected at this point

A solution is to combine all the operations into one (anonymous)
function and then apply that with the Expr.name.map() method:

df.select(

pl.all()

.name.map(lambda s: s.lower().replace(" ", "_"))
)
shape: (1, 3)
T T T 1
| text | an_integer | boolean |
[s |
| str | 164 | bool |
L 1 1 1
I T T 1
| value | 5040 | true |
L L 1 |

This restriction may be lifted in a future version of Polars.

Expressions Are Idiomatic

You already know that expressions are lazy and that they need to be executed in order
to be useful. We understand that it may take time to get used to this, especially if
you’re used to a nonlazy (eager) way of working using packages, such as Pandas.

98 | Chapter 5:Beginning Expressions

So here’s a word of caution. All expression methods and inline operations are also
available for Series. For instance, the filtering rows example from earlier, which uses
expressions, can be rewritten to use Series directly:

fruit.filter(
(fruit["weight"] > 1000) & fruit["is_round"]

)

shape: (2, 5)

T T T T T 1
| name | weight | color | is_round | origin |
(SRR B (O I
| str | 164 | str | bool | str

L 1 1 1 1 1
I T T T T 1
| cantaloupe | 2500 | orange | true | Africa |
| Watermelon | 5000 | green | true | Africa |
L ! L 1 1 |

If you have experience with Pandas, then this syntax will look familiar, and you might
be tempted to write this way when using Polars.

While the code above produces the same results as the original example, it is exe-
cuted eagerly. Because of this, it doesn’t use the Polars query engine and makes no
optimizations. Moreover, the two components are executed serially rather than in
parallel.

This becomes even more clear when you apply multiple methods to a LazyFrame.
Here’s an example that uses expressions:

(
fruit
.lazy()
filter((pl.col("weight") > 1000) & pl.col("is_round"))
.with_columns(pl.col("name").str.ends_with("berry").alias("is_berry"))
.collect()
)
shape: (2, 6)
T T T T T T 1
| name | weight | color | is_round | origin | is_berry |
| - (S Dt Bkl Bt e
| str | 164 | str | bool | str | bool
L 1 1 1 1 1 1
) T T T T T 1
| cantaloupe | 2500 | orange | true | Africa | false |
| Watermelon | 5000 | green | true | Africa | false |
L ! L ! 1 ! |

Now an example without expressions:

(

fruit

.lazy()
filter((fruit["weight"] > 1000) & fruit["is_round"])

Expressions Are Idiomatic | 99

.with_columns(fruit["name"].str.ends_with("berry").alias("is_berry"))
.collect()
)

ShapeError: unable to add a column of length 10 to a DataFrame of height 2

That’s right: Polars can’t optimize the execution plan, and now you also have to be
careful to apply the methods in the correct order to avoid an error. (The reason
for the error is that the method df.filter() reduces the DataFrame to two rows,
whereas the variable fruit still refers to a DataFrame with 10 rows.)

For these reasons, we always encourage you to use expressions. Being lazy pays off in
Polars.

Conclusion

Expressions are at the heart of Polars. In this first chapter about expressions, we've
covered their fundamentals: what they are, where theyre used, how theyre created,
and why they’re so elegant and efficient. In the next chapter we explain how you can
continue expressions by adding operations.

100 | Chapter5: Beginning Expressions

CHAPTER 6
Continuing Expressions

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 8th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

In the previous chapter you learned how to begin an expression from scratch. A
bare expression only gets you so far. In this chapter, you’ll learn how to continue an
expression by adding additional operations (or methods).

More specifcally, you'll learn how to:

o Perform mathematical transformations
o Work with missing values

« Apply smoothing to values

o Select specific values

o Summarize values using statistics

101

mailto:sgrey@oreilly.com

A Plethora of Methods

There are more than 138 methods discussed in this chapter. It’s not
possible to explain and demonstrate every single method in full
detail. Please refer to the Polars API Reference for more details and
examples.

For some code snippets in this chapter we use the math and numpy modules for
accessing certain constants, such as math.pi, and for generating random values:

import math
import numpy as np

print(f"{math.pi=3}")
rng = np.random.default_rng(1729)
print(f"{rng.random()=3}")

math.pi=3.141592653589793
rng.random()=0.03074202960516803

Types of Operations

Rather than presenting 138 methods as one long list, we've organized them into five
sections according to which inputs they use and the shape of their output. Within
those five sections we've grouped methods into categories when applicable. Methods
that do not fall into any category are placed in “Others” Figure 6-1 shows the types of
operations for continuing expressions.

/—b[Element-wise]

Maintain length

| Series-wise

Reduce length}
\-P‘ To one or more]

Extend length

Figure 6-1. Types of operations for continuing expressions

102 | Chapter 6: Continuing Expressions

https://docs.pola.rs/py-polars/html/reference/

Related Methods, Different Sections

While we trust this organization to be useful, it does cause certain
related methods to appear in different sections. For example, both
Expr.unique() and Expr.is_unique() are concerned with unique
values, but because the former may reduce the length of the Series
while the latter does not, they’re in different sections.

Here are four examples to demonstrate what we mean by the various types of opera-
tions.

Example A: Element-Wise Operations

In the first example welll use two methods to create two additional columns:
Expr.sqrt() and Expr.interpolate(). Both methods operate element-wise (that is,
they consider one element at a time) and maintain the length of the Series.

penguins = (
pl.read_csv("data/penguins.csv", null_values="NA")
.select(
"species”,
"i{sland",
"sex",
"year",
pl.col("body_mass_g").alias("mass") / 1000
))
penguins.with_columns(
pl.col("mass").sqrt().alias("mass_sqrt"), (1]
pl.col("mass").interpolate().alias("mass_filled") (2]
)

shape: (344, 7)

I T T T T T T 1
| species | island | sex | year | mass | mass_sqrt | mass_filled |
[SSUR ISt (e el (N R |
| str | str | str | 164 | fea | fea | fea [
L 1] | l] 1]
I T 1 T T 1 T 1
| Adelie | Torgersen | male | 2007 | 3.75 | 1.936492 | 3.75 |
| Adelie | Torgersen | female | 2007 | 3.8 | 1.949359 | 3.8 [
| Adelie | Torgersen | female | 2007 | 3.25 | 1.802776 | 3.25 |
| Adelie | Torgersen | null | 2007 | null | null | 3.35

Adelie	Torgersen	female	2007	3.45	1.857418	3.45
..
Chinstrap	Dream	male	2009	4.0	2.0	4.0
Chinstrap	Dream	female	2009	3.4	1.843909	3.4 [
Chinstrap	Dream	male	2009	3.775	1.942936	3.775
Chinstrap	Dream	male	2009	4.1	2.024846	4.1 [
Chinstrap	Dream	female	2009	3.775	1.942936	3.775
L | | | | | | |

Types of Operations | 103

© The Expr.sqrt() method computes the square root of the mass column. Notice
how null values remain null.

® It would be better to interpolate the missing values per species so that we get a
more accurate result.

Example B: Operations that Summarize to One

In the second example, we apply two methods that summarize the Series to a single
value:

penguins.select(
pl.col("mass").mean(),
pl.col("island").mode().first() (1]

)

shape: (1, 2)

I T 1
| mass | island |
IR I
| fe4 | str |
l l l
| 4.201754 | Biscoe |
L | |

© Be careful—the method Expr.mode() can, depending on the input, produce
more than one value. That's why we continue the expression with the method
Expr.first() to make sure there’s only one value.

Example C: Operations that Summarize to One or More

In the third example, we use the Expr.unique() method to get the unique values in a
Series. This is a type of operation that summarizes to one or more values.

penguins.select(
pl.col("island").unique()
)

shape: (3, 1)
| —
island

| str |

| —
1

| Dream |
| Biscoe |

| Torgersen |
L

104 | Chapter 6: Continuing Expressions

Example D: Operations that Extend

In the fourth example we use the Expr.extend_constant() method to append a
specific value to the end of the Series. This type of operation is used less often. The
example is perhaps a bit contrived, but it does illustrate how powerful expressions can
be if you add additional methods:

penguins.select(
pl.col("species")
.unique()
.repeat_by(3000) (2]
.explode()
.extend_constant("Saiyan", n=1) (4]
)

shape: (9_001, 1)
 —
| species |

IS
| str |

| —
1

Chinstrap
Chinstrap
Chinstrap
Chinstrap
Chinstrap

Adelie
Adelie
Adelie
Adelie

Saiyan
|

Get the three unique values of the Series.
Repeat each value 3,000 times. This produces a Series of three long lists.

Use the explode method to get one long Series of 9,000 values.

© o © ©

Add one more value at the end of the Series. The result is a Series with a length
that’s just over 9,000.

With these four examples, you should have an idea of the type of operations we can
use to continue expressions.

Types of Operations | 105

Element-Wise Operations

This section is about operations that consider one element at a time. Each element
is computed independently and the order in which they appear doesn’t matter. Exam-
ples include the Expr.sqrt() method for computing the square root of each value
and the Expr.round() method for rounding values.

In the next five subsections we're looking at element-wise operations for performing
mathematical transformations, related to trigonometry, for rounding and binning,
concerned with missing or infinite values, and others.

Operations That Perform Mathematical Transformations

Mathematical transformations, such as computing the log or the square root, form
the basis of any data-related task. The methods listed in Table 6-1 all perform some
mathematical transformation. Arithmetic between two expressions (such as adding
and multiplication) is discussed in the next chapter because thats mostly about
combining expressions.

Table 6-1. Element-wise operations for performing elementary mathematical
transformations

Method Description

Expr.abs() Compute absolute values.

Expr.cbrt() Compute the cube root of the elements.

Expr.exp() Compute the exponential, element-wise.

Expr.log(..) Compute the logarithm to a given base.

Expr.log10() Compute the base 10 logarithm of the input array, element-wise.
Expr.logip() Compute the natural logarithm of each element plus one.
Expr.sign() Compute the element-wise indication of the sign.

Expr.sqrt() Compute the square root of the elements.

The methods Expr.abs(), Expr.exp(), Expr.log(), Expr.log10(), Expr.loglp(),
Expr.sign(), Expr.sqrt() are demonstrated in the following code snippet for a
variety of numerical values. The method Expr.cbrt() is similar in usage.

(

pl.DataFrame({"x": [-2, 0, 0.5, 1, math.e, 1000]})

.with_columns(
abs=pl.col("x").abs(),
exp=pl.col("x").exp(),
log2=pl.col("x").log(2), (1]
log10=pl.col("x").log10(),
loglp=pl.col("x").loglp(),
sign=pl.col("x").sign(),

106 | Chapter 6: Continuing Expressions

sqrt=pl.col("x").sqrt(),

)
)
shape: (6, 8)
I T T T I T I I 1
| x | abs | exp | log2 | log1e6 | loglp | sign | sqrt
| --- | --- | --- - - e - e
| fe4 | f64 | f64 | fe4 | fe64 | fe4 | 164 | fe4 |
L 1 | 1 | 1 | |]
I 1 T 1 I T T I 1
-2.000	2.000	.135	NaN	NaN	NaN	-1	NaN
©.000	©.000	1.000	-inf	-inf	0.000	©	0.000
©.500	©.500	1.649	-1.000	-0.301	0.405	1	0.707
1.000	1.000	2.718	0.000	©0.000	0.693	1	1.000
2.718	2.718	15.154	1.443	0.434	1.313	1	1.649
1000.000	1000.000	inf	9.966	3.000	6.909	1	31.623
L | | | | | | | |

© The method Expr.log() is the only one here that requires an argument, namely
the base of the logarithm.

Operations Related to Trigonometry

Trigonometry is the branch of mathematics that studies the relationships between
angles and sides of triangles. It plays a crucial role in various aspects of data science,
including signal processing, spacial data, analysis and feature engineering. Table 6-2

lists all methods related to trigonometry that Polars supports.

Table 6-2. Element-wise operations related to trigonometry

Method

Compute the element-wise value for the inverse cosine.

Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.

arccos()
arccosh()
arcsin()
arcsinh()
arctan()
arctanh()
cos()
cosh()
degrees()
radians()
sin()
sinh()
tan()
tanh()

Compute the element-wise value for the inverse hyperbolic cosine.

Compute the element-wise value for the inverse sine.

Compute the element-wise value for the inverse hyperbolic sine.

Compute the element-wise value for the inverse tangent.

Compute the element-wise value for the inverse hyperbolic tangent.

Compute the element-wise value for the cosine.

Compute the element-wise value for the hyperbolic cosine.

Convert from radians to degrees.

Convert from degrees to radians.

Compute the element-wise value for the sine.

Compute the element-wise value for the hyperbolic sine.

Compute the element-wise value for the tangent.

Compute the element-wise value for the hyperbolic tangent.

Element-Wise Operations

107

In the code snippet below we apply the methods Expr.arccos(), Expr.cos(),
Expr.degrees(), Expr.radians(), and Expr.sin() to a variety of numerical val-
ues. The remaining methods, namely Expr.arccosh(), Expr.arcsin(), Expr.arc
sinh(), Expr.arctan(), Expr.arctanh(), Expr.cosh(), Expr.sinh(), Expr.tan(),
and Expr.tanh() can be used in a similar way. None of these methods require
arguments.

(
pl.DataFrame({"x": [-math.pi, 0, 1, math.pi, 2*math.pi, 90, 180, 360]})
.with_columns(
arccos=pl.col("x").arccos(), (1]
cos=pl.col("x").cos(),
degrees=pl.col("x").degrees(),
radians=pl.col("x").radians(),
sin=pl.col("x").sin(),

)
shape: (8, 6)

I T T T T T 1
x	arccos	cos	degrees	radians	sin
-]	-	-	-	
fe4	fe4	fe4	fe4	fe4	fe4
L] 1] 1]]					
I T T T T T 1					
-3.141593	NaN	-1.0	-180.0	-0.054831	-1.2246e-16
o.0	1.570796	1.0	0.0	0.0	o.0
1.0	0.0	©.540302	57.29578	©.017453	0.841471
3.141593	NaN	-1.0	180.0	©.054831	1.2246e-16
6.283185	NaN	1.0	360.0	©.109662	-2.4493e-16
90.0	NaN	-0.448074	5156.620156	1.570796	0.893997
180.0	NaN	-0.59846	10313.240312	3.141593	-0.801153
360.0	NaN	-0.283691	20626.480625	6.283185	0.958916
L | 1 | | | |

O With element-wise operations, when an operation results in a NaN, the other
values are not affected.

Operations That Round and Categorize

Sometimes your data contains too much precision or too many distinct values. In
those cases it can be useful to round them or to cut them into discrete categories.
Table 6-3 lists the methods that Polars provides for this'.

1 Technically, the method Expr.qcut() is not an element-wise operation because quantiles are based on an
entire Series. In this case we thought it’s best to keep it close to its cousin Expr.cut().

108 | Chapter 6: Continuing Expressions

Table 6-3. Element-wise operations for rounding and binning

Method Description

Expr.ceil() Round up to the nearest integer value.

Expr.clip(..) Clip (limit) the values in an array to a min and max boundary.
Expr.cut(..) Cut continuous values into discrete categories.

Expr.floor() Round down to the nearest integer value.

Expr.qcut(..) Cutcontinuous values into discrete categories based on their quantiles.

Expr.round(..) Round underlying floating point data by decimals digits.

Below, we demonstrate these methods (and Expr.round() twice) for a range of
numbers.

(
pl.DataFrame({"x": [-6, -0.5, 0, 0.5, math.pi, 9.9, 9.99, 9.999]1})
.with_columns(
ceil=pl.col("x").ceil(),
clip=pl.col("x").clip(-1, 1),
cut=pl.col("x").cut([-1, 1], labels=["bad", "neutral”, "good"1), @
floor=pl.col("x").floor(),
qcut=pl.col("x").qcut([0.5], labels=["below median", "above median"]),
round2=pl.col("x").round(2),
round®=pl.col("x").round(0), (2]
)
)
shape: (8, 8)
I T T T T T T T 1
| x | ceil | clip | cut | floor | qcut | round2 | roundo |
ISR IR [I N |-
| fe4 | fe4 | f64 | cat | f64 | cat | fe4 | f64 |
L]]]] |] |]
I T T T T T T T 1
| -6.0 | -6.0 | -1.0 | bad | -6.0 | below median | -6.0 | -6.0
-0.5	-0.0	-0.5	neutral	-1.0	below median	-6.5	-1.0
o.0	.06	8.0	neutral	6.0	below median	6.0	0.0
0.5	1.6	0.5	neutral	6.0	below median	0.5	1.0
3.141593	4.6	1.0	good	3.0	above median	3.14	3.0
9.9	16.0	1.0	good	9.0	above median	9.9	10.0
9.99	16.0	1.0	good	9.0	above median	9.99	10.06
9.999	16.0	1.0	good	9.0	above median	16.0	10.0
L | | | | | | | |

© The methods Expr.cut() and Expr.qcut() construct a Categorical Series. If you
want it to be an integer, you can add, for instance, Expr.cast(pl.Int64) to the
expression.

® Even when rounding to zero decimals using Expr.round(0) (or by using
Expr.ceil() or Expr.floor()) the type remains float.

Element-Wise Operations | 109

Operations for Missing or Infinite Values

When your data is based on the real world, youre bound to have some missing
values. NaNs or infinite values are usually the result of some invalid transformation.
If you need to deal with these, Polars offers a couple of convenient methods (see
Table 6-4). Later in this chapter, there are a few more methods for dealing with
missing values in a Series-wise manner.

Table 6-4. Element-wise operations concerned with missing or infinite values

Method Description

Expr.fill_nan(..) Fill floating point NaN value with a fill value.
Expr.fill_null(..) Fill null values using the specified value or strategy.
Expr.is_finite() Returns a Boolean Series indicating which values are finite.
Expr.is_infinite() Returnsa Boolean Series indicating which values are infinite.
Expr.is_nan() Returns a Boolean Series indicating which values are NaN.
Expr.is_not_nan() Returnsa Boolean Series indicating which values are not NaN.
Expr.is_not_null() Returnsa Boolean Series indicating which values are not null.

Expr.is_null() Returns a Boolean Series indicating which values are null.

The code snippet below applies the methods Expr.fill_nan(), Expr.fill_null(),
Expr.is_finite(), Expr.is_infinite(), Expr.is_nan(), and Expr.is_null() to a
couple of numerical values, some of which are infinite or missing. The methods
Expr.is_not_nan() and Expr.is_not_null() produce the inverse of Expr.is_nan()
and Expr.is_null(), respectively.

x = [42, math.nan, None, math.inf, -math.inf]
(

pl.DataFrame({"x": x})

.with_columns(
fill_nan=pl.col("x").fil1l_nan(999),
fill_null=pl.col("x").f1ll_null(o®),
is_finite=pl.col("x").is_finite(),
is_infinite=pl.col("x").1is_finite(),
is_nan=pl.col("x").is_nan(),
is_null=pl.col("x").is_null(),

)
shape: (5, 7)

T T T T
X | fill_nan | fill_null is_infinite | is_nan | is_null

T T T 1
| | is_finite | |
(ST e e e (S
| fea | fo4 | fe4 | bool | bool | bool | bool

L 1 1 1 1 1 1 1
) T T T T T T 1
| 42.0 | 42.0 | 42.0 | true | true | false | false

| NaN | 999.0 | NaN | false | false | true | false

110 | Chapter 6: Continuing Expressions

| null | null | 0.0 | null | null | null | true

|

| inf | inf | inf | false | false | false | false |

| -inf | -inf | -inf | false | false | false | false |

L I I I I I I i
NaN Versus Null

This is a good reminder that NaNs and nulls are not the same
type. If you need to fill both types in a Series, you can add
Expr.fill_nan() and Expr.fill_null() to the expression. And
if you need to know whether a value is either Nan or null, you can
combine Expr.is_nan() and Expr.is_null() with the Boolean
OR operator (|):

(
pl.DataFrame({"x": x})
.with_columns(
fill_both=pl.col("x").fill_nan(0).fill_null(0),
is_either=(
pl.col("x").is_nan() | pl.col("x").is_null()
)J
)
)
shape: (5, 3)
I T T 1
x	fill_both	is_either
-] -	---	
fea	fo4	bool
L 1 1 1		
I T T 1		
42.0	42.0	false
NaN	0.0	true I
null	0.0	true
inf	inf	false
-inf	-inf	false
L | | |

You'll learn more about Boolean operators in the next chapter.
Whether you actually want to treat NaNs and nulls the same
depends on the task at hand.

Other Operations

There are three element-wise operators that don't fall in any of the above categories
(see Table 6-5).

Table 6-5. Miscellaneous element-wise operations

Method Description

Expr.hash(..) Hash the elements in the selection.

Element-Wise Operations | 111

Method Description

Expr.repeat_by(..) Repeatthe elements in this Series as specified in the given expression.

Expr.replace(..)

Replace values in column according to remapping dictionary.

The following code snippet demonstrates these three methods:

(
pl.DataFrame({"x": ["here", "there", "their", "they're"]})
.with_columns(
hash=pl.col("x").hash(seed=1337), (1)
repeat_by=pl.col("x").repeat_by(3),
replace=pl.col("x").replace({
"here": "there",
"they're": "they are",
})J
)
)
shape: (4, 4)
I T T T 1
| x | hash | repeat_by | replace |
| -] - | - |-
| str | ue4 | list[str] | str |
L 1 | 1 1
I T T T 1
here	12695211751326448172	["here", "here", "here"]	there
there	17329794691236705436	["there", "there", "there"]	there
their	2663095961041830581	["their", "their", "their"]	their
they're	6743063676290245144	["they're", "they're", "they'r..	they are
1]]]]

© With the method Expr.hash(), different computers or computers with different
versions of Polars will generate different hash values. More information can be

found on the AHash website.

Nonreducing Series-Wise Operations

In the remaining sections, were no longer looking at element wise operations but at
Series-wise operations. That means that the Series is transformed as a whole and the

values themselves (and sometimes also their order) depend on each other. Examples

include the Expr.cum_sum() method for computing the cumulative sum and the

Expr.forward_fill() method for filling missing values.

In the next six subsections were looking at operations which do not change the
length of the Series, which includes operations that accumulate, fill, shift, compute

rolling statistics, sort, and more.

112

Chapter 6: Continuing Expressions

https://docs.rs/ahash/latest/ahash/

Operations That Accumulate

Cumulative operations progress through a Series and maintain, for instance, the sum
or the maximum. See Table 6-6 for all the cumulative methods that Polars provides.

Table 6-6. Series-wise operations that are cumulative

Method Description

Expr.cum_count(..) Getan array with the cumulative count computed at every element.
Expr.cum_max(..) Get an array with the cumulative max computed at every element.
Expr.cum_min(..) Get an array with the cumulative min computed at every element.
Expr.cum_prod(..) Get an array with the cumulative product computed at every element.
Expr.cum_sum(..) Get an array with the cumulative sum computed at every element.
Expr.diff(..) (alculate the n-th discrete difference.

Expr.pct_change(..) Computes percentage change between values.

All these methods accept one argument, reverse, which indicates whether the Series
should be reversed first, i.e., before the operation is applied. The code snippet below
applies all methods to a variety of numerical values, including a missing value and a
NaN:

(
pl.DataFrame({"x": [0, 1, 2, None, 2, np.NaN, -1, 2]})
.with_columns(
cum_count=pl.col("x").cum_count(), (1]
cum_max=pl.col("x").cum_max(),
cum_min=pl.col("x").cum_min(),
cum_prod=pl.col("x").cum_prod(reverse=True), (2]
cum_sum=pl.col("x").cum_sum(),
diff=pl.col("x").diff(),
pct_change=pl.col("x").pct_change(),
)
)
shape: (8, 8)
I T T T T T T T 1
| x | cum_count | cum_max | cum_min | cum_prod | cum_sum | diff | pct_change |
| -] - RN R O I R |
| f64 | u32 | f | fea | fea | fea | fe4 | fe4 |
i : : : : : : : :
| 0.0 | 1 | 0.0 | 0.0 | NaN | 0.0 | null | null [
| 1.0 | 2 | 1.0 | 0.0 | NaN | 1.0 | 1.0 | inf |
| 2.0 | 3 | 2.0 | 0.0 | NaN | 3.0 | 1.0 | 1.0 [
| null | 3 | null | null | null | null | null | 0.0 |
| 2.0 | 4 | 2.0 | 0.0 | NaN | 5.0 | null | @.0 [
| NaN | 5 | 2.0 | 0.0 | NaN | NaN | NaN | NaN |
| -1.0] 6 | 2.0 | -1.0 | -2.0 | NaN | NaN | NaN [

Nonreducing Series-Wise Operations | 113

| 2.0 | 7 | 2.0 | -1.0 | 2.0 | NaN | 3.0 | -3.0
L | | | | | | | |

The method Expr.cum_count() does not count missing values.

If we didn't reverse this operation, then the entire column would be filled with
Zero0s.

Contagious NaNs

NaNs may affect the output of Series-wise operations. In this exam-
ple:

o The output of Expr.cum_count(), Expr.cum_max(), and
Expr.cum_min() is not affected at all.

o The output of Expr.cum_prod() and Expr.cum_sum() remains
affected once a NaN has been seen.

o The output of Expr.diff() and Expr.pct_change() is only
affected for two values for every NaN.

Operations That Fill and Shift

Table 6-7 lists the nonreducing Series-wise methods for filling and shifting.

Table 6-7. Series-wise operations for filling and shifting

Method Description

Expr.backward_fil1(..) Fill missing values with the next to-be-seen value.
Expr.forward_fill(..) Fill missing values with the latest seen value.
Expr.interpolate(..) Fill missing values using interpolation.

Expr.shift(..) Shift the values by a given period.

Lets apply the methods Expr.backward_fill(), Expr.forward_fill(), Expr.inter
polate() (twice), and Expr.shift() (twice) to some values, including missing val-
ues:

pl.DataFrame({"x": [-1, O, 1, None, None, 3, 4, math.nan, 6]})
.with_columns(
backward_fill=pl.col("x").backward_fill(), (1)
forward_fill=pl.col("x").forward_fill(limit=1),
interpl=pl.col("x").interpolate(method="11inear"), (2]
interp2=pl.col("x").interpolate(method="nearest"),
shifti=pl.col("x").shift(1),
shift2=pl.col("x").shift(-2),

114 | Chapter 6: Continuing Expressions

)

shape: (9, 7)

I T T T T T T 1
| x | backward_fill | forward_fill | interpl | interp2 | shift1l | shift2 |
[===] --- | --- | --- | --- [=== -
| fe4 | fo4 | fo4 | fe64 | fe4 | fe64 | fe4 |
: : : : : : i :
-1.0	-1.0	-1.0	-1.0	-1.0	nult	1.0
.0	0.0	0.0	o.0	0.0	-1.0	null
1.0	1.0	1.0	1.0	1.0	0.0	null
null	3.0	1.0	1.666667	1.0	1.0	3.0
null	3.0	null	2.333333	3.0	null	4.0
3.0	3.0	3.0	3.0	3.0	null	NaN
4.0	4.0	4.0	4.0	4.0	3.0	6.0
NaN	NaN	NaN	NaN	NaN	4.0	null
6.0	6.0	6.0	6.0	6.0	NaN	null
L 1 | 1 1 1 1]

NaNs do not get filled or interpolated.

Note the difference between the two interpolation methods linear and nearest.
The former interpolates between the previous and next non-missing values in the
Series, while the latter uses the actual closest non-missing value.

Operations Related to Duplicate Values

There are four nonreducing Series-wise methods that are concerned with unique and
duplicate values (see Table 6-8). There are other methods which are concerned with
this, but since they reduce the length of the Series, they are discussed later in the
chapter.

Table 6-8. Series-wise operations that return a Boolean Series

Method Description

Expr.is_duplicated() Get a Boolean Series that indicates which values are duplicated.
Expr.is_first_distinct() Geta Boolean Seriers that indicates which values are first unique.
Expr.is_last_distinct() Geta Boolean Seriers that indicates which values are last unique.

Expr.is_unique() Get a Boolean Seriers that indicates which values are unique.

Below, we apply these four methods to a couple of strings:

(
pl.DataFrame({"x": ["A", "C", "D", "C"]}) (1)
.with_columns(
is_duplicated=pl.col("x").is_duplicated(),
is_first_distinct=pl.col("x").is_first_distinct(),

Nonreducing Series-Wise Operations | 115

is_last_distinct=pl.col("x").1is_last_distinct(),
is_unique=pl.col("x").1is_unique(),

)
shape: (4, 5)

T T T T T 1
| x | is_duplicated | is_first_distinct | is_last_distinct | is_unique |
[--- | --- | --- | --- | --- |
| str | bool | bool | bool | bool |
i : : : : :
A	false	true	true	true
¢	true	true	false	false
b	false	true	true	true
¢	true	false	true	false
L I L I I I

© Keep in mind that many of these methods can also be applied to other data types.

Operations That Compute Rolling Statistics

Rolling statistics are used to smooth the values of a Series (see Table 6-9).

Table 6-9. Series-wise operations for rolling statistics

Method Description

Expr.ewm_mean(..) Exponentially-weighted moving average.
Expr.ewm_std(..) Exponentially-weighted moving standard deviation.
Expr.ewm_var(..) Exponentially-weighted moving variance.

Expr.rolling_apply(..) Apply a custom rolling window function.

Expr.rolling_map(..) Compute a custom rolling window function.
Expr.rolling_max(..) Apply a rolling max (moving max) over the values in this array.
Expr.rolling_mean(..) Apply a rolling mean (moving mean) over the values in this array.

Expr.rolling_median(..) Compute a rolling median.
Expr.rolling_min(..) Apply a rolling min (moving min) over the values in this array.

Expr.rolling_quantile(..) Compute arolling quantile.

Expr.rolling_skew(..) Compute a rolling skew.

Expr.rolling_std(..) Compute a rolling standard deviation.
Expr.rolling_sum(..) Apply a rolling sum (moving sum) over the values in this array.
Expr.rolling_var(..) Compute a rolling variance.

The following code snippet applies Expr.ewm_mean(), Expr.rolling_mean(), and
Expr.rolling_min() to the close column of some stock data. The remaining meth-
ods work similarly:

116 | Chapter 6: Continuing Expressions

stock = (
pl.read_csv("data/stock/nvda/2023.csv", try_parse_dates=True)

)

.select("date", "close")

.with_columns(

ewn_mean=pl.col("close").ewm_mean(com=7, ignore_nulls=True),

rolling_mean=pl.col("close").rolling_mean(window_size=7),
rolling_min=pl.col("close").rolling_min(window_size=7),

)

stock

shape: (124, 5)

I T T T T 1
| date | close | ewm_mean | rolling_mean | rolling_min |
| - | --- | - | - | --- !
| date | fe4 | f64 | fe4 | fe4 |
L 1 1 1 1 1
I 1 T T 1 1
| 2023-01-03 | 143.149994 | 143.149994 | null | null

| 2023-01-04 | 147.490005 | 145.464667 | null | null

| 2023-01-05 | 142.649994 | 144.398755 | null | null

| 2023-01-06 | 148.589996 | 145.664782 | null | null

| 2023-01-09 | 156.279999 | 148.388917 | null | null

| .. | .. | .. | .. | .. I
2023-06-26	406.320007	407.54911	425.805716	406.320007
2023-06-27	418.76001	408.950473	424.695718	406.320007
2023-06-28	411.170013	409.227915	422.445718	406.320007
2023-06-29	408.220001	409.101926	418.180006	406.320007
2023-06-30	423.019989	410.841684	417.118574	406.320007
L | | | 1 |

Because it’s difficult to see the difference between these
visualize it (see Figure 6-2).

from
stock.plot.line(

x="date",

import DateFormatter

methods in a table, let’s

y=["close", "ewm_mean", "rolling_mean", "rolling_min"],
xformatter=DateFormatter("%b %Y")

Nonreducing Series-Wise Operations

117

450 - Variable

f/\ —— close
400 4 —— ewm_mean

rolling_mean
350 -

= rolling_min
300 -
2501
200 -
150 A
Feb I2023 Mar I2023 Apr 5023 May I2023 Jun é023
date

Figure 6-2. Several rolling statistics operations applied to stock data

In Chapter 17 you’'ll learn more about creating data visualizations with Polars.

Operations That Sort

Table 6-10 lists the methods that Polars provides for sorting expressions.

Table 6-10. Series-wise operations that sort

Method Description

Expr.arg_sort(..) Gettheindex values that would sort this column.
Expr.shuffle(..) Shuffle the contents of this expression.
Expr.sort(..) Sort this column.

Expr.sort_by(..) Sortthis column by the ordering of other columns.
Expr.reverse() Reverse the selection.

Expr.rank(..) Assign ranks to data, dealing with ties appropriately.

Sorting Expressions is Not That Common

In real-world data sets, a row often represents an observation or
event. For that reason, you'll most likely want to sort entire rows so

* that the measurements of each observation or event stay together.
The methods in this section, however, only deal with a single
expression or column.

Let’s apply those six methods on a couple of numbers. We've also added a column y to
demonstrate the method Expr.sort_by().

(
pl.DataFrame({
"x": [1, 3, None, 3, 7],
”y”: [HDII, IIIH’ Hsll’ HcH’ Holl]’

118 | Chapter 6: Continuing Expressions

b

.with_columns(
arg_sort=pl.col("x").arg_sort(),
shuffle=pl.col("x").shuffle(seed=7),
sort=pl.col("x").sort(nulls_last=True),
sort_by=pl.col("x").sort_by("y"),
reverse=pl.col("x").reverse(),
rank=pl.col("x").rank(),

)

)

shape: (5, 8)

I T T T T T T T 1

| x | v | arg_sort | shuffle | sort | sort_by | reverse | rank |

[CEE BT BT | -- [- | --- | --- [--- |

| 164 | str | u32 | i64 | 164 | i64 | 164 | fea |

I I I I I I I I i

1 b |2 | 1 1 |3 | 7 | 1.0 |

| 3 |1 |o | null | 3 | 1 | 3 | 2.5 |

| nult | s | 1 | 3 | 3 | 3 | null | null |

| 3 | c |3 | 7 | 7 | 7 | 3 | 2.5

| 7 |o | 4 | 3 | null | null | 1 | 4.0 |

L 1 1 1 1 1 1 1]
Other Operations

There’s one nonreducing Series-wise operator that doesn’t fall in any of the above
categories (see Table 6-11).

Table 6-11. One other Series-wise operations

Method Description

Expr.rle_id() Map valuesto run IDs.

Let’s apply Expr.rle_id() to a numerical Series:

(
pl.DataFrame({"x": [33, 33, 27, 33, 60, 60, 60, 33, 60]})
.with_columns(
rle_id=pl.col("x").rle_id(),
)
)

shape: (9, 2)

I E—
| x | rle_id |
| -] -
| i64 | u32 |

I I I
I |
I I

w w
w w

N
~
o)

Nonreducing Series-Wise Operations | 119

33
60
60
60
33
60

vl h WWWN

Series-Wise Operations that Summarize to One

We continue with Series-wise operations but in this section were looking at opera-
tions which summarize all values in the Series into one value. Examples include the
Expr.mean() method for computing the mean value and the Expr.null_count()
method for counting the number of missing values.

In the next four subsections we look at operations that summarize to one using
quantifiers, by computing statistics, by counting, and others.

Repeated Values

If you use an operation that summarizes to one value and you keep any of the original
columns, the computed value gets repeated. For example, here the mean of the Series
gets repeated four times:

(
pl.DataFrame({"x": [1, 3, 3, 71}
.with_columns(
mean=pl.col("x").mean(),
)
)

shape: (4, 2)

Because summarizing operations are most often used in an aggregation context, this
is not really an issue. For example, when you compute the mean per group:

(
pl.DataFrame({
"cluster”: ["a", "a", "b", "b"],
"x": [1, 3, 3, 7]

120 | Chapter 6: Continuing Expressions

1))
.group_by("cluster")

-agg(
mean=pl.col("x").mean(),
)

)
shape: (2, 2)

T T 1
| cluster | mean |
[N
| str | fe4 |
: : :
| | 5.0 |
[| 2.0 |
L L I

In the remainder of this chapter, we'll use the df.select() method to exclude the
original columns and thus avoid repeated values.

Operations That Are Quantifiers

Using quantifiers allows you to summarize multiple Boolean values into one. Polars

supports the universal and existential quantifiers via Expr.all() and Expr.any()
(see Table 6-12).

Table 6-12. Series-wise operations that summarize to one value using quantifiers

Method Description

Expr.all(..) Returnwhetherall values in the column are True.

Expr.any(..) Returnwhether any of the values in the column are True.

Both methods accept one argument ignore_nulls that indicates whether missing
values should be ignored. The following code snippet applies Expr.all() and
Expr.any() to three Boolean columns, x, y, and z:

(

pl.DataFrame({
"x": [True, False, False],
"y": [True, True, True],
"z": [False, False, False],
b

.select(
pl.all().all().name.suffix("_all"),
pl.all().any().name.suffix("_any"),

Series-Wise Operations that SummarizetoOne | 121

shape: (1, 6)

T T T T T T 1
| x_all | y_all | z_all | x_any | y_any | z_any |
[i [Rl Rl Ry
| bool | bool | bool | bool | bool | bool |
L 1 l 1 1 l 1
) T I T T I 1
| false | true | false | true | true | false |
L I I I I I i

Operations That Compute Statistics
Polars supports many methods to compute a variety of statistics of a numerical Series

(see Table 6-13).

Table 6-13. Series-wise operations that summarize to one element by computing statistics

Method Description

Expr.entropy(..) Computes the entropy.
Expr.kurtosis(..) Compute the kurtosis (Fisher or Pearson) of a dataset.

Expr.max() Get maximum value.

Expr.mean() Get mean value.

Expr.median() Get median value using linear interpolation.
Expr.min() Get minimum value.

Expr.nan_max() Get maximum value, but propagate/poison encountered NaN values.
Expr.nan_min() Get minimum value, but propagate/poison encountered NaN values.
Expr.product() Compute the product of an expression.

Expr.quantile(..) Getquantile value.

Expr.skew(..) Compute the sample skewness of a data set.
Expr.std(..) Get standard deviation.

Expr.sum() Get sum value.

Expr.var(..) Get variance.

In the following code snippet, we apply the methods Expr.max(), Expr.mean(),
Expr.quantile(), Expr.skew(), Expr.std(), Expr.sum(), and Expr.var() to a mil-
lion values. These values are sampled from a normal distribution with a mean of 5
and a standard deviation of 3.

samples = rng.normal(loc=5, scale=3, size=1_000_000)

(
pl.DataFrame({"x": samples})
.select(
max=pLl.col("x").max(),
mean=pl.col("x").mean(),
quantile=pl.col("x").quantile(quantile=0.95),

122 | Chapter 6: Continuing Expressions

skew=pl.col("x").skew(),
std=pl.col("x").std(),
sum=pl.col("x").sum(),
var=pl.col("x").var(),

)
shape: (1, 7)

T T
max | mean sum | var

I T T T T 1
| | quantile | skew | std | |
| - N e e B R (e
| foa | fea | fea | foa | fea | fea | fea |
L 1 l 1 1 1 1]
) T I T T T T 1
| 20.752443 | 4.994978 | 9.931565 | 0.003245 | 2.999926 | 4.9950e6 | 8.999558 |
L | | | | | | |

The other methods Expr.entropy(), Expr.kurtosis(), Expr.median(), Expr.min(),
Expr.nan_max(), Expr.nan_min(), and Expr.product(), work similarly.

Operations That Count

Polars offers several methods for counting certain things (see Table 6-14).

Table 6-14. Series-wise operations that summarize to one element by counting

Method Description

Expr.approx_n_unique() Approximate count of unique values.

Expr.count() Count the number of values in this expression.
Expr.len() Count the number of values in this expression.
Expr.n_unique() Count unique values.
Expr.null_count() Count null values.

To demonstrate these methods, let’s generate 1,729 random integers between 0 and
10,000 and make one value missing:

samples = pl.Series(rng.integers(low=0, high=10_000, size=1_729))
samples[403] = None
df_ints = (
pl.DataFrame({"x": samples})
.with_row_index()
)
df_ints.slice(400, 6) (3]

shape: (6, 2)

1 1
| index | x |
| o e
| w32 | 164 |
| 400 | 807 |

Series-Wise Operations that SummarizetoOne | 123

401	8634
402	2109
403	null
404	1740
405	3333
I E—	

© The 403rd element is made missing.

® The DataFrame method df.with_row_index() adds a row index as the first
column.

© We use the DataFrame method df.slice() to display a subset of the rows.

Let’s apply these five methods to the column x:

df_ints.select(
approx_n_unique=pl.col("x").approx_n_unique(),
count=pl.col("x").count(),
len=pl.col("x").len(),
n_unique=pl.col("x").n_unique(),
null_count=pl.col("x").null_count(),

)

shape: (1, 5)

I T T T T 1
| approx_n_unique | count | len | n_unique | null_count |
| - [[I |
| u32 | w32 | w32 | u32 | u32 |
L 1 1 l 1]
I T T T 1 1
| 1572 | 1728 | 1729 | 1575 | 1 |
L | | | | |

Other Operations

There are eight Series-wise operators that summarize to one that don't fall in any of
the above categories (see Table 6-15).

Table 6-15. Several miscellaneous Series-wise operations that summarize to one element

Method Description

Expr.arg_max() Get the index of the maximal value.
Expr.arg_min() Get the index of the minimal value.
Expr.first() Get the first value.
Expr.get(..) Return a single value by index.
Expr.implode() Aggregate values into a list.
Expr.last() Get the last value.

Expr.lower_bound() Calculate the lower bound.

124 | Chapter 6: Continuing Expressions

Method Description

Expr.upper_bound() Calculate the upper bound.

Below we apply the methods Expr.arg_min(), Expr.first(), Expr.get(),
Expr.implode(), Expr.last(), and Expr.upper_bound() to the same values as the
previous section. The method Expr.arg_max() is similar to Expr.arg_min(), and
Expr.lower_bound() is similar to Expr.upper_bound().

df_ints.select(
arg_min=pl.col("x").arg_min(),
first=pl.col("x").first(),
get=pl.col("x").get(403), (1]
implode=pl.col("x").implode(),
last=pl.col("x").last(),
upper_bound=pl.col("x").upper_bound(),

)

shape: (1, 6)

I T T T T T 1
| arg_min | first | get | implode | last | upper_bound [
IEEEE ISR [P R | -] - |
| u32 | 164 | 164 | list[i64] | 164 | 164 |
L 1 1 1 1 1]
I 1 1 1 1 1 1
| o | o | null | [0, 7245, .. 3723] | 3723 | 9223372036854775807 |
L | | | | | |

© The result is null because, in the previous section, we made the 403rd element
missing.

Series-Wise Operations that Summarize to One or More

Besides Series-wise operations that summarize to one, there are also some that sum-
marize to one or more. The actual length of the output Series depends on the values.

In the next four subsections, we cover Series-wise operations that summarize to one
or more based on unique values, by selecting, by dropping missing values, and others.

Operations Related to Unique Values
Table 6-16 lists four methods related with unique values.

Table 6-16. Several Series-wise operations that summarize to one or more elements based on
unique values

Method Description

Expr.arg_unique() Get index of first unique value.

Expr.unique(..) Get unique values of this expression.

Series-Wise Operations that Summarize to One or More | 125

Method Description

Expr.unique_counts() Returna count of the unique values in the order of appearance.

Expr.value_counts(..) Countthe occurrences of unique values.

Let’s apply those four methods to a Series of strings:

(
pl.DataFrame({"x": ["A", "C", "D", "C"]})
.select(
arg_unique=pl.col("x").arg_unique(),
unique=pl.col("x").unique(maintain_order=True), (1)
unique_counts=pl.col("x").unique_counts(),
value_counts=pl.col("x").value_counts(), (2]

)
shape: (3, 4)

T T T T 1
| arg_unique | unique | unique_counts | value_counts |
[-- | --- | --- | -- |
| u32 | str | u32 | struct[2] |
i : : : :
| o | A | 1 | {"c",2} |
| 1 | c | 2 | {"D",1} |
R LI F 1 B

Maintaining the order of the values is computationally more intensive.

The result of Expr.value_counts() is of data type pl.Struct; a combination of
Expr.unique() and Expr.unique_counts(), though not necessarily in the same
order.

Operations That Select

Table 6-17 lists several methods for selecting specific elements based on their position
or value.

Table 6-17. Several Series-wise operations that summarize to one or more elements by
selecting

Method Description

Expr.bottom_k(..) Return the k smallest elements.
Expr.head(..) Get the first n rows.

Expr.limit(..) Get the first n rows (alias for Expr.head()).
Expr.sample(..) Sample from this expression.
Expr.slice(..) Get a slice of this expression.

126 | Chapter 6: Continuing Expressions

Method

Get the last n rows.

Expr.
Expr.gather(..)
Expr.gather_every(..) Take every nth value in the Series and return as a new Series.

Expr.

tatil(..)

top_k(..)

Take values by index.

Return the k largest elements.

The following code snippet applies the methods Expr.bottom_k(), Expr.head(),

Expr.sample(),

Expr.slice(),

Expr.top_k() to the samples generated earlier.

Expr.gather(),

Expr.gather_every(),

and

The method Expr.limit() is an alias for Expr.head(). The method Expr.tail()
works just like Expr.head(), except it starts at the bottom.

df_ints.select(

bottom_k=pl.col("x").bottom_k(7),
head=pl.col("x").head(7),

sample=pl.col("x").sample(7),

slice=pl.col("x").slice(400, 7),

(1]

gather=pl.col("x").gather([1, 1, 2, 3, 5, 8, 13]),
gather_every=pl.col("x").gather_every(247), (2]
top_k=pl.col("x").top_k(7),

)

shape: (7, 7)

I T T T T T T 1
bottom_k	head	sample	slice	gather	gather_every	top_k
---	---	- -	-	-	---	
164	i64	164	164	164	164	164
: : : : : : : :						
null	o	68710	807	7245	0	9998
o	7245	2202	8634	7245	8680	9988
1	5227	7328	2109	5227	8483	9988
6	2747	1648	null	2747	8358	9986
7	9816	5761	1740	2657	1805	9985
10	2657	9315	3333	5393	3638	9979
21	4578	8370	788	8203	5843	9975
L | | | | 1 | |

@ Note that nulls are first.

® Has to match a height of 7, otherwise you get an error saying that the lengths
don’t match. In this example, taking every 247th value from a Series of length
1,729 yields 7 values.

Operations That Drop Missing Values

Table 6-18 lists two methods for dropping missing values: Expr.drop_nans() and
Expr.drop_nulls().

Series-Wise Operations that Summarize to One or More

127

Table 6-18. Several Series-wise operations that summarize to one or more elements by
dropping missing values

Method Description

Expr.drop_nans() Drop floating point NaN values.

Expr.drop_nulls() Dropall null values.

Here’s how you can apply both methods:

x = [None, 1, 2, 3, np.NaN]
(

pl.DataFrame({"x": x})

.select(
drop_nans=pl.col("x").drop_nans(),
drop_nulls=pl.col("x").drop_nulls()

)

)

shape: (4, 2)

I T 1
drop_nans	drop_nulls
fea	fea
I l	
null	1.0
1.0	2.0
2.0	3.0 I
3.0	NaN
L | |

Other Operations

There are six Series-wise operators that summarize to one or more that don't fall in
any of the above categories (see Table 6-19).

Table 6-19. Miscellaneous Series-wise operations that summarize to one or more elements

Method Description

Expr.arg_true() Return indices where expression evaluates True.
Expr.flatten() Flatten a list or string column.

Expr.mode() Compute the most occurring value(s).
Expr.reshape(..) Reshape this Expr to a flat Series or a Series of Lists.
Expr.rle() Get the lengths of runs of identical values.

Expr.search_sorted(..) Findindices where elements should be inserted to maintain order.

Below we apply the methods Expr.arg_true(), Expr.mode(), Expr.reshape(),
Expr.rle(), and Expr.search_sorted() to an unsorted Series of integers. We

128 | Chapter 6: Continuing Expressions

demonstrate the methods separately, because they construct Series of different
lengths.

First, the method Expr.arg_true() can be applied as follows:

numbers = [33, 33, 27, 33, 60, 60, 60, 33, 60]

(
pl.DataFrame({"x": numbers})
.select(
arg_true=(pl.col("x") >= 60).arg_true(), (1)
)
)

shape: (4, 1)
 E—
arg_true
u32

— |
1

oo« WU, N N

|
|
|
IS

© We use the greater-than operator (>=) to get a Boolean Series first. You'll learn
more about this and other comparison operators in the next chapter.

Second, the method Expr.mode() can be applied as follows:

(
pl.DataFrame({"x": numbers})
.select(
mode=pl.col("x").mode(),
)
)

shape: (2, 1)
| —

| mode

I

I

I
.

i64 |
| I |
1
| 60 |
| 33 |

| —

~

w o

Third, the method Expr.reshape() can be applied as follows:

(
pl.DataFrame({"x": numbers})
.select(
reshape=pl.col("x").reshape((3, 3)), (1)

Series-Wise Operations that Summarize to One or More | 129

)

shape: (3, 1)

1
reshape
1ist[i64]
e —
1
[33, 33, 27]
[33, 60, 60]

| [60, 33, 60] |
I — |

© The total number of elements needs to remain the same. For example, it’s not
possible to reshape this into 5 rows where the last row is a pl.List of one
element.

Fourth, the method Expr.rle() can be applied as follows:

(
pl.DataFrame({"x": numbers})
.select(
rle=pl.col("x").rle(), (1]
)
)

shape: (6, 1)

 E—
| rle |

| struct[2] |
| { |
| { |
| { |
| {3,60} |
| { |
| { |

© Compare with Expr.rle_id() discussed earlier in this chapter.
Finally, the method Expr.search_sorted() can be applied as follows:

(
pl.DataFrame({"x": numbers})
.select(
rle=pl.col("x").sort().search_sorted(42), (1]
)

130 | Chapter 6: Continuing Expressions

shape: (1, 1)

-
w 1~
]

c

© The method Expr.search_sorted() is probably most useful on a sorted Series.

Series-Wise Operations that Extend

There are only two operations that can extend the length of a Series (see Table 6-20).

Table 6-20. Two Series-wise operations that extend

Method Description

Expr.explode() Explode a list expression.

Expr.extend_constant(..) Extend the Series with a contant value.

Below, we use the method Expr.explode() to turn a List Series into a regular, flat
Series:

(
pl.DataFrame({
AT AP P GRS
b
.select(
explode=pl.col("x").explode()
)
)

shape: (4, 1)

We demonstrated the method Expr.extend_constant() in the beginning of this
chapter.

Series-Wise Operations that Extend | 131

Conclusion

In this chapter, you've learned about many different methods to continue expressions
with additional operations. These operations were organized according to the length
of the Series they construct. In the next chapter you're going to learn how to combine
expressions.

132 | Chapter 6: Continuing Expressions

CHAPTER7
Combining Expressions

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 9th chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Now that you understand the fundamentals of expressions and know various meth-
ods to continue them, it’s time to learn how to combine them.

Combining expressions is necessary whenever the Series you want to construct is
based on more than one value or column. This happens to be the case more often
than you might think: for example, when you want to compute the ratio between
two float columns, filter rows based on multiple conditions, or concatenate multiple
string columns into one.

In fact, you've already combined expressions several times in the previous chapters.
Let’s look at an example from Chapter 5 to refresh your memory:

fruit = pl.read_csv("data/fruit.csv")
fruit.filter(pl.col("is_round") & (pl.col("weight") > 1000))

shape: (2, 5)

T T T T T 1
| name | weight | color | is_round | origin |

133

mailto:sgrey@oreilly.com

| | | | | |
| | 164 | str | | str |
L 1 | 1 1]
I 1 T 1 1 1
| Ccantaloupe | 2500 | orange | true | Africa |
| watermelon | 5000 | green | true | Africa |
L I I I I i

This code combines, in two steps, two existing columns (is_round and weight)
and one value (1000) into one expression. The df.filter() method then uses this
expression to filter rows.

Because of how the parentheses are organized, the comparison operator greater-than
(>) combines the weight column and the value 1600. When the value is larger, it
produces the Boolean True. Second, the Boolean AND operator (&) combines the
is_round column and the Series constructed in the first step. Only when they’re both
True is the output True. The df . filter () method interprets True as “keep this row”

That’s only the tip of the iceberg when it comes to combining expressions in Polars.
In this chapter you'll learn about the difference between inline operators and method
chaining. You'll also learn how to combine expressions:

« Through arithmetic, such as adding and multiplying

By comparing, such as greater than and equals

« With Boolean algebra, such as conjunction and negation
o Via bitwise operations, such as AND and XOR

+ Using a variety of module-level functions

Inline Operators Versus Methods

In the previous two chapters, you used method chaining to continue expressions. To
combine expressions, you can often use inline operators instead of method chaining.
Both approaches produce the same result, as illustrated in Figure 7-1.

While every inline operator has a corresponding Expr method,
not every method (or function) to combine expressions has a cor-
responding inline operator. Examples are the method Expr.dot()
and the function pl.concat_list().

134 | Chapter7: Combining Expressions

pLLit(6) pl.lit(7) mﬁuw‘ ‘MMND‘ ‘mﬁum ‘mﬁun

N

* Expr.mul()
v v v v
6 7 42 42

Figure 7-1. Combining expressions using inline operators or method chaining produce
the same result

To illustrate this in code, the following snippet multiplies two columns i and j using
both approaches:

(
pl.DataFrame({
"{": [6, 0, 2, 2.5],
"5 [7, 1, 2, 3]
b
.with_columns(
(pl.col("1") * pl.col("j")).alias("*"),
pl.col("1").mul(pl.col("j")).alias("Expr.mul()")
)
)
shape: (4, 4)
I T T T 1
I i } j I * I Expr.mul() I
| fea | 164 | fo4 | f64 |
i : i i :
6.0	7	42.0	42.0
e.o	1	0.0	0.0
20612	4.0	4.0	
2.5 3	7.5	7.5	
L 1 | 1 |

As expected, both approaches yield the same result. We think that the spaces around
the inline operator make it clear that youre combining two expressions into a new
one. For this reason, we generally recommend you use the corresponding inline
operator, if one exists. However, note that with the inline-operator approach, you
need to wrap the new expression in parentheses in order to continue with additional
methods.

That’s it for multiplying expressions. Now let’s look at some other arithmetic opera-
tions.

Inline Operators Versus Methods | 135

Arithmetic Operations

Arithmetic is the cornerstone of any data-related task. You can perform arithmetic
with both expressions and Python values.

Here’s a fruity example that divides the weight column (an expression) by 1000 (a
Python integer):

fruit.select(
pl.col("name"),
(pl.col("weight") / 1000)

)

shape: (10, 2)

T T 1
name	weight
str	fea [
: :	
Avocado	0.2 [
Banana	0.12
Blueberry	0.001
cantaloupe	2.5
Cranberry	0.002
Elderberry	0.001
orange	0.13
Papaya	1.0
Peach	0.15
watermelon	5.0
L I I

Table 7-1 lists all inline operators and methods used to perform arithmetic in Polars.

Table 7-1. Inline operators and their corresponding methods for performing arithmetic

Inline Operator Method Description

+ Expr.add(..) Addition

- Expr.sub(..) Subtraction

* Expr.mul(..) Multiplication
/ Expr.truediv(..) Division

// Expr.floordiv(..) Floordivision
*k Expr.pow(..) Power

% Expr.mod(..) Modulus

N/A Expr.dot(..) Dot product

The following code snippet demonstrates how to use these inline operators on two
integer columns (i and j). Polars automatically creates a float column when needed.

136 | Chapter7: Combining Expressions

Because the method Expr.dot() has no corresponding inline operator, we use the
method instead.

pl.Config(float_precision=2, tbl_cell_numeric_alignment="RIGHT") (1]

(
pl.DataFrame({
"i{": [0, 2, 2, -2, -2],
"j": [1, 2, 3, 4, -5]
b
.with_columns(
(pl.col("i") + pl.col("j")).alias("1 + j"),
(pl.col("1") - pl.col("j")).alias("L - "),
(pl.col("i") * pl.col("j")).alias("1 * j"),
(pl.col("1") / pl.col("j")).alias("L / "),
(pl.col("i") // pl.col("j")).alias("t // "),
(pl.col("1") ** pl.col("j")).alias("i ** j"),
(pl.col("i") % 2).alias("j % 2"), @
pl.col("i1").dot(pl.col("j")).alias("tL - "), (3]
)
)

shape: (5, 10)

I T T T T T T T T T

I i} jIi+j}i-jIi*jIi/j}i//jii**jij%ZIi-jIl
| i64 | 164 | 164 | 1164 | 164 | fo4 | i64 | fe4 | 164 | 164 |
i : : : : : : : i : i
o 1] 1	-1 0	0.00	0	0.00	1	12		
2 2	4	o	4	1.00	1	4.00	o	12
2] 3	5	-1 6	0.67	o	8.00	1	12	
-2 4	2	-6	-8	-0.50	-1	16.00	0	12
-2 -5 -7 3	10	0.40	0	-0.03	1	12		
L 1 | | | | | | | | I

© We're temporarily changing these two display settings to fit this wide DataFrame
on the page.

® The modulo operator (%) accepts a second expression, just like the other arith-
metic operations.

© Because the dot product doesn't have a corresponding inline operator we use a
dot character (-) in the column name. The dot product is also the only operation
here that uses entire columns instead of elements; thats why the last column
contains the same value (namely, 12) five times.

Arithmetic Operations | 137

Comparison Operations

Which of these experiments produced a significant result? Which movies released in the
90s have an IMDB score of 8.7 or higher? Are these voltages within the allowed range?
These are all data-related questions that involve comparing values.

Comparing values in Polars works pretty much the same as in Python, except that
they cannot be chained (explained below).

pl.select(pl.lit("a") > pl.1it("b"))
shape: (1, 1)

You'll most likely compare two numeric columns (such as pl.Int8 and pl.Float64).
You can also compare strings and temporal data types (which includes pl.Date,
pl.DateTime, pl.Duration, and pl.Time).

A comparison always constructs a Boolean Series. This Series can be added as a col-
umn to a DataFrame, but it's more often used for filtering rows, using df . filter(),
or in conditional expressions using, pl.when().

Here’s an example using the DataFrame fruit that compares the column weight
with the value 1000 using the greater-than-or-equal operator (>=). The constructed
Boolean Series is used to filter the rows.

(
fruit.select(
pl.col("name"),
pl.col("weight"),
)
filter(pl.col("weight") >= 1000)
)

shape: (3, 2)

name

weight

str 164

2500
1000
5000

Cantaloupe
Papaya
Watermelon

Table 7-2 lists all inline operators and methods for performing comparisons in Polars.

138 | Chapter7: Combining Expressions

Table 7-2. Inline operators and their methods for performing comparisons

Inline Operator Method Description
< Expr.lt(..) Lessthan

<= Expr.le(..) Lessthanorequal
== Expr.eq(..) Equal

>= Expr.ge(..) Greater than or equal
> Expr.gt(..) Greater than

1= Expr.ne(..) Notequal

Chaining Comparisons

In Python itself, you can chain the inline operators listed in Table 7-2. Consider the
following example, which uses the less-than operator (<) twice to test whether the
value of x is between 3 and 5:

X =4
3<x<5

True
With Polars, however, if you do this you get an error:
pl.select(pl.lit(3) < pl.lit(x) < pl.1lit(5))

TypeError: the truth value of an Expr is ambiguous

You probably got here by using a Python standard library function instea

d of the native expressions API.

Here are some things you might want to try:

- instead of ‘pl.col('a') and pl.col('b')", use ‘pl.col('a') & pl.col('b

1)\

- instead of ‘pl.col('a') in [y, z]', use ‘pl.col('a').is_in([y, z])°

- instead of "max(pl.col('a'), pl.col('b'))", use ‘pl.max_horizontal(pl.

col('a'), pl.col('b'))"
A solution is to perform two separate comparisons and combine them using the AND
(&) operator:

pl.select((pl.1it(3) < pl.lit(x)) & (pl.lit(x) < pL.1lit(5))).item()
True

You'll learn more about the AND (&) operator in the next section, where we discuss
combining expressions using Boolean algebra. Another solution, in this particular
case, is to use the method Expr.1is_between():

pl.select(pl.lit(x).is_between(3, 5)).1item()

True

Comparison Operations | 139

Let’s apply a couple of comparison operators to two numerical columns a and b:

(

pl.DataFrame({
"a": [-273.15, 0, 42, 100],
"b": [1.4142, 2.7183, 42, 3.1415]

b

.with_columns(
(pl.col("a") == pl.col("b")).alias("a == b"),
(pl.col("a") <= pl.col("b")).alias("a <= b"),
(pl.all() > 0).name.suffix(" > 0"),

((pl.col("b") - pl.1it(2).sqrt()).abs() < 1e-3).alias("b = v2"), (1)
((1 < pl.col("b")) & (pl.col("b") < 3)).alias("1l < b < 3")
)

)
shape: (4, 8)
T T T T T T T T 1
| a | b | a==b|la<=b|la>0|b>0|b=v2]|1<b<3]|
(SR DR D U P R P
| fe4 | fe4 | bool | bool | bool | bool | bool | bool |
L | 1 1 1] l 1]
I T T T T T T T 1
-273.15	1.4142	false	true	false	true	true	true
e.0	2.7183	false	true	false	true	false	true
42.0	42.0	true	true	true	true	false	false
100.0	3.1415	false	false	true	true	false	false
L 1 1 1 1 1 1 1 |

© Here we use both arithmetic and comparison to combine expressions.

The following code snippets demonstrates a few more comparisons between different
data types. Two of those are not allowed: String with number and DateTime with
Time.

pl.select(
bool_num=pl.lit(True) > 0,
time_time=pl.time(23, 58) > pl.time(0, 0),
datetime_date=pl.datetime(1969, 7, 21, 2, 56) < pl.date(1976, 7, 20),
str_num=pl.1it("5") < pl.lit(3).cast(pl.String), (1)
datetime_time=pl.datetime(1999, 1, 1).dt.time() !'= pl.time(0, 0), (2]
).transpose(include_header=True,
header_name="comparison",
column_names=["allowed"])

shape: (5, 2)

T T 1
| comparison | allowed |
- |
| str | bool |
i : :
| bool_num | true |
| time_time | true |
| datetime_date | true |

140 | Chapter7: Combining Expressions

| str_num | false |

| datetime_time | false |
L I I

© You cannot compare a String and a number. A solution is to first cast the number
to String using Expr.cast(pl.String).

® You also cannot compare a DateTime and a Time. A solution is to first extract the
Time component from the DateTime using the method Expr.dt. time().

Boolean Algebra Operations

In the previous section, we combined two comparison expressions to check whether
the value of x is between two values. Let’s use that example again, but set the value of
x to 7. We'll also assign the two comparison expressions to two variables ,p and q.

X =7

p = pL.lit(3) < plL.lit(x) # True

q = pL.lit(x) < plL.lit(5) # False
pl.select(p & q).item()

False

We combine the expressions p and q using the Boolean operator AND (&), which
evaluates to True if and only if both p and q are True. Since q is False in this case, the
result is False. This Boolean operation is known as conjunction.

Conjunction is one of the three basic operations of Boolean algebra: conjunction (&),
disjunction (|), and negation (~).! With these three basic operations you can create
any secondary Boolean operation.

Polars provides one secondary operation: “exclusive or” (*). Table 7-3 lists the four
Boolean operations with their inline operators and methods.

Table 7-3. Inline operators and their corresponding methods for performing Boolean
operations

Operation Inline Operator Method Description
Conjunction & Expr.and_(..) Logical AND
Disjunction | Expr.or_(..) Logical OR

Negation ~ Expr.not_() Logical NOT
Exclusive OR ~ Expr.xor(..) Logical XOR

1 Because negation (~) operates on a single expression, it's not combining expressions, but we're still discussing
it here. It’s only logical.

Boolean Algebra Operations | 141

Ugly Underscores

In Python itself, and, or, and not are reserved keywords. That’s why
the first three methods listed in Table 7-3 have underscores (_) at
the end. They’re ugly, but you’ll most likely use the corresponding
inline operators (&, |, and ~) anyway.

The conjection operation results in True only if both expressions are True. The
following code snippet applies six Boolean operations (the four listed in Table 7-3 and
two bonus operations* NAND and NOR) to all possible combinations of p and q. The
output is known as a truth table.

(
pl.DataFrame({
"p": [True, True, False, False],
"q": [True, False, True, False]
b
.with_columns(
(pl.col("p") & pl.col("g")).alias("p & q"),
(pl.col("p") | pl.col("q")).alias("p | q"),
(~pl.col("p")).alias("~p"),
(pl.col("p") »~ pl.col("g")).alias("p ~ q"),
(~(pl.col("p") & pl.col("q"))).alias("p * q"), (1]
((pl.col("p").or_(pl.col("q"))).not_()).alias("p ! q") (2]
)
)

shape: (4, 8)

T 1
ptalpial

T T T T T T T
| p | g lp&aglplal~ |p~al

| -- | === |- | - T BT BT
| bool | bool | bool | bool | bool | bool | bool | bool |
L 1 l 1 1 l 1 1]
I T T T T T T T 1
true	true	true	true	false	false	false	false
true	false	false	true	false	true	true	false
false	true	false	true	true	true	true	false
false	false	false	false	true	false	true	true
f I 1 I I 1 I I |

© The NAND (NOT AND) operator is not part of Polars, but it can be emulated by
combining the NOT (~) and the AND (&) operators.

® The same holds for the NOR (NOT OR) operator. Here we use an alternative
syntax with methods instead of inline operators.

2 NAND stands for NOT AND. NOR stands for NOT OR.

142 | Chapter7: Combining Expressions

Being able to combine Boolean expressions via these Boolean operations allows you
to express complex relationships between expressions. In the next section we’re going
to apply the same methods and inline operations to integers instead of Booleans.

Bitwise Operations

You can also apply the AND (&), OR (]), XOR (#), and NOT(~) operators to integers.
In that case, these operators perform bitwise operations.?

Here’s an example that applies the bitwise OR operator (|) to the values 10 and 34,
which yields, logically*, 42:

pl.select(pl.lit(10) | pl.1lit(34)).1item()

42

Under the hood, Polars is applying the OR operator to each pair of bits that makes up
the numbers 10 and 34. The output bit is 1 when at least one input bit is 1:

00001010 (decimal 10)
OR 00100010 (decimal 34)
= 00101010 (decimal 42)
So 10 | 34 is 42, because in either 10 or 34, the second, fourth, and sixth bits from
the right are all 1. You can think of these bits as a sequence of Booleans—it’s the same
logic.

Table 7-4 lists the four bitwise operations and their inline operators and methods.

Table 7-4. Inline operators and their methods for performing bitwise operations.

Inline Operator Method Description

& Expr.and_(..) Bitwise AND
| Expr.or_(..) Bitwise OR

~ Expr.not_(..) Bitwise NOT
A Expr.xor(..) Bitwise XOR

The following code snippet applies the bitwise operations listed in Table 7-4 to a
couple of integers:

bits = (
pl.DataFrame({
"x": [1, 1, 0, 0, 7, 10],
"y": [1, 0, 1, 0, 2, 34]

3 Bitwise operations are perhaps a bit niche, but this is The Definitive Guide after all.
4 See Douglas Adams’ The Hitchhiker’s Guide to the Galaxy for a comprehensive explanation.

Bitwise Operations | 143

}, schema={"x": pl.UInt8, "y": pl.UInt8}) (1)
.with_columns(
(pl.col("x") & pl.col("y")).alias("x & y"),
(pl.col("x") | pl.col("y")).alias("x | y")
(~pl.col("x")).alias("~x"),
(pl.col("x") ~ pl.col("y")).alias("x ~ y"),

B

)
bits

shape: (6, 6)

T
y | x&y

I T T T T 1
| x| [x 1yl ~ |x~y]|
[B B BT T BEEEIN BT
| u8 | u8 | u8 | us | u8 | u8 |
I I I I I I I
|1 |1 |1 | 1 | 254 | o |
|1 e o | 1 | 254 | 1 |
le |1 o | 1 | 255 | 1 |
le |o |o | o | 255 | @ |
|7 |2 |2 | 7 | 248 | 5 |
| 16 | 34 |2 | 42 | 245 | 40 |
L 1 | | | | |

@ We're using 8-bit unsigned integers (pl.UInt8) so that it’s easy to reason about
the operations on a bit level. You can apply bitwise operators to any integer type.

Let’s take a look at the binary string representations of these integers to understand
how each operator works:

bits.select(pl.all().map_elements("{0:08b}".format))

MapWithoutReturnDtypeWarning: Calling “map_elements® without specifying ‘return_
dtype” can lead to unpredictable results. Specify ‘return_dtype’ to silence this
warning.

shape: (6, 6)

X X &y x|y ~X x "Ny

str str str str str

00000001 [OOOCO0OO [OOOOOOEO | 60000001 | 11111110 | 60000001
00000000 [00000001 [0OOCEO0O | 60000001 | 11111111 | 60000001
00000000 [OOOOO000 [OOOOOOEO | 60000 | 11111111 | OO0
00000111 [00000010 | 00000010 | 00000111 | 11111000 | 60000101
00001010 | 00100010 | 00000010 | 00101010 | 11110101 | 00101000

I T T T I T
I I I I | I
I I I | I I
I I I I | I
i I I I i I
| 00000001 | 00000001 | 00000001 | 00000001 | 11111110 | 06EEOO0O
I I I | I I
I I I I | I
I I I | I I
I I I I | I
I I I | I I
L 1 1 1 1 1

144 | Chapter7: Combining Expressions

Ones and Zeros

When you use ones and zeros to represent Booleans, the result of
these operators is the same as if they were Booleans, except for the

- NOT operator. The inverse of True is False, whereas the inverse of
1is 254 (and not 0), because the 7 left-most bits add up to 254 (128
+ 64+ 32+ 16+ 8 + 4 + 2 =254). We recommend using Booleans
whenever an expression or column should be able to take only two
values.

Using Functions

Table 7-5 lists all module-level functions that combine existing expressions into a
single one.

Table 7-5. Module-level functions to combine expressions

Function Description

pl.all_horizontal(..) Compute the bitwise AND horizontally across columns.
pl.any_horizontal(..) Compute the bitwise OR horizontally across columns.
pl.arctan2(..) Compute two argument arctan in radians.

pl.arctan2d(..) Compute two argument arctan in degrees.

pl.arg_sort_by(..) Return the row indices that would sort the columns.
pl.arg_where(..) Return indices where condition evaluates True.

pl.coalesce(..) Folds the columns from left to right, keeping the first non-null value.
pl.concat_list(..) Horizontally concatenate columns into a single list column.
pl.concat_str(..) Horizontally concatenate columns into a single string column.
pl.corr(..) Compute the Pearson’s or Spearman rank correlation between two columns.
pl.cov(..) Compute the covariance between two columns/ expressions.
pl.cum_fold(..) Cumulatively fold horizontally across columns with a left fold.
pl.cum_reduce(..) Cumulatively reduce horizontally across columns with a left fold.

pl.cum_sum_horizontal(..) Cumulatively sum all values horizontally across columns.

pl.fold(..) Accumulate over multiple columns horizontally / row wise with a left fold.
pl.format(..) Format expressions as a string.

pl.map_batches(..) Map a custom function over multiple columns/expressions.
pl.max_horizontal(..) Get the maximum value horizontally across columns.
pl.min_horizontal(..) Get the minimum value horizontally across columns.

pl.reduce(..) Accumulate over multiple columns horizontally/ row wise with a left fold.
pl.rolling_corr(..) Compute the rolling correlation between two columns/ expressions.
pl.rolling_cov(..) Compute the rolling covariance between two columns/ expressions.

Using Functions | 145

pl.struct(..) Collect columns into a struct column.
pl.sum_horizontal(..) Sum all values horizontally across columns.
pl.when(..) Start a when-then-otherwise expression.

We cannot discuss them all in detail, but here are few noteworthy examples.

First is a two functions that combine the values of multiple expressions into one
structure. The functions pl.concat_list() and pl.struct() create a list and a
struct, respectively.

scientists = pl.DataFrame({
'first_name': ['George', 'Grace', 'John', 'Kurt', 'Ada'],
'last_name': ['Boole', 'Hopper', 'Tukey', 'Godel', 'Lovelace'],
'country': ['England', 'United States', 'United States',
'Austria-Hungary', 'England']

H

scientists

shape: (5, 3)

I I I 1
first_name	last_name	country
--- [---	---	
str	str	str
i i : :		
George	Boole	England

Grace	Hopper	united States
John	Tukey	United States
Kurt	Godel	Austria-Hungary
Ada	Lovelace	England

L 1 I |

scientists.select(
pl.concat_list(pl.col("~*_name$")).alias("concat_list"),
pl.struct(pl.all()).alias("struct")

)

shape: (5, 2)

concat_list struct

struct[3]

list[str]

{"George","Boole","England"}
{"Grace", "Hopper","United States"}
{"John","Tukey","United States"}
{"Kurt","Godel","Austria-Hungary"}

{"Ada","Lovelace","England"}

["Grace", "Hopper"]
["John", "Tukey"]
["Kurt", "Godel"]
["Ada", "Lovelace"]

I
|
|
|
I
| ["George", "Boole"]
|
|
I
L

146 | Chapter7: Combining Expressions

Second, the functions pl.concat_str() and pl.format() create one string based on
multiple expressions. The latter gives you a bit more flexibility in how the strings are
combined. Here’s an example:

scientists.select(
pl.concat_str(pl.all(), separator=" ").alias("concat_str"),
pl.format("{}, {} from {}",
"last_name", "first_name", "country").alias("format")

)
shape: (5, 2)

concat_str format
str str

Grace Hopper United States | Hopper, Grace from United States
John Tukey United States Tukey, John from United States
Kurt Godel Austria-Hungary | Goédel, Kurt from Austria-Hungary

T T 1
i : :	
George Boole England	Boole, George from England
Ada Lovelace England	Lovelace, Ada from England

1 I i

The functions pl.all_horizontal() and pl.any_horizontal() are analogous to
using the AND (&) and OR (|) operators on multiple columns. This is especially
useful if you have many columns to combine and you don’t want to write them all
out. For instance:

prefs = pl.DataFrame({
"id": [1, 7, 42, 101, 999],
"has_pet": [True, False, True, False, True],
"likes_travel": [False, False, False, False, True],
"likes_movies": [True, False, True, False, True],
"likes_books": [False, False, True, True, True]
1) .with_columns(
pl.all_horizontal(pl.exclude("id")).alias("all"),
pl.any_horizontal(pl.exclude("id")).alias("any"),
)
prefs

shape: (5, 7)

T T T T T T T 1
| id | has_pet | likes_travel | likes_movies | likes_books | all | any |
| |] | - | - |
| 164 | bool | bool | bool | bool | bool | bool
L 1 l 1 1 1 1 1
I 1 T T T T 1 1
| 1 | true | false | true | false | false | true
| 7 | false | false | false | false | false | false |
| 42 | true | false | true | true | false | true
| 101 | false | false | false | true | false | true
| 999 | true | true | true | true | true | true
L I L I I I I I

Using Functions | 147

Related are the functions pl.sum_horizontal(),

pl.max_horizontal(),

and

pl.min_horizontal(), which compute the sum, maximum, and minimum across
columns, respectively. They work on both Boolean and numerical columns:

prefs.select(

pl.sum_horizontal(pl.all()).alias("sum"),
pl.max_horizontal(pl.all()).alias("max"),
pl.min_horizontal(pl.all()).alias("min"),

)

shape: (5, 3)

I T T 1
| sum | max | min |
TN IR R
| 164 | i64 | 164 |
: : : :
4 |1 o |
7 |7 |eo |
46	42	o
103	101	0
1005	999	1
L | 1 |

The function pl.when() creates a conditional expression. Think of it as a vectorized
if statement. (We'll cover this in Chapter Chapter 9.) Here’s an example:

prefs.select(
pl.col("id"),

pl.when(pl.all_horizontal(pl.col("~likes_.*S$")))
.then(pl.lit("Likes everything"))
.when(pl.any_horizontal(pl.col("~likes_.*$")))
.then(pl.lit("Likes something"))
.otherwise(pl.lit("Likes nothing"))

.alias("likes_what")

)

shape: (5, 2)

I T 1
| id | likes_what |
e] o |
| 164 | str

L 1]
I T 1
1	Likes something
7	Likes nothing
42	Likes something
101	Likes something
999	Likes everything
1 | I

For the other functions we refer you to the online documentation.

148

Chapter 7: Combining Expressions

Conclusion

This concludes the third and last chapter of Part III, Express. You can now begin,
continue, and combine expressions.

Conclusion | 149

CHAPTER 8
Filtering and Sorting Rows

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 11th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Whereas the previous chapter was about columns, this chapter is all about the rows in
a DataFrame'. We'll mainly look at two types of operations you can perform on rows:
filtering and sorting.

With filtering, you select a subset of the rows, based on their values. With sorting, you
reorder the rows based on their values; the number of rows remains the same.

In this chapter you’ll learn how to:

o Filter rows using the df . filter() method
o Sort rows using the df .sort() method

o Apply various other methods that are related to filtering and sorting

1 The methods covered in this chapter can also be applied to LazyFrames.

151

mailto:sgrey@oreilly.com

You'll be working with a small DataFrame about power tools you'll typically find
in the garage of an amateur woodworker. For each tool, we have its type, product
code, brand, whether it’s cordless or not, its price, and RPM (revolutions per minute).
Here’s what the tools DataFrame looks like:

tools = pl.read_csv("data/tools.csv")
tools

shape: (10, 6)

I T T T T T 1
| tool | product | brand | cordless | price | rpm
| --- | --- I I R
| str | str | str | bool | 164 | 164 |
L 1 1 1 1 |]
I 1 T 1 1 T 1
| Rotary Hammer | HR2230 | Makita | false | 199 | 1050
Miter Saw	acm 8 saL	Bosch	false	391	5500
Plunge Cut Saw	DSP600Z3]	Makita	true	459	6300
Impact Driver	pTD157Z	Makita	true	156	3000
Jigsaw	PST 900 PEL	Bosch	false	79	3100
Angle Grinder	DGA504Z3	Makita	true	229	8500
Nail Gun	DPSB2IN1-XJ	DeWalt	true	129	null
Router	POF 1400 ACE	Bosch	false	185	28000
Random Orbital Sander	DB0186Z3J	Makita	true	199	11000
Table Saw	DWE7485	Dewalt	false	516	5800
L 1 1 1 1 1]

Let’s get filtering.

Filtering Rows

The rows of a DataFrame can be filtered with the df.filter() method. Filtering
allows us to answer questions that involve phrases such as “is at least” or “is equal to”.
For example, which tools are by Makita? Or: which tools are cordless? ??? on page 152
illustrates this operation conceptually.

image::drawing-filter.png

To filter rows, you specify which rows you want to keep. This can be done using
expressions, column names, and constraints. We'll first discuss expressions, since
they’re the most flexible of the three.

Filtering Based on Expressions

The first way to filter rows is using expressions. You've already seen them in action
in Chapter 5. Theyre the most flexible way to filter of the three because you can use
all types of comparisons (such as equals and greater-than) and combine them using
Boolean algebra (such as OR and AND). Comparison and Boolean algebra operations
are discussed in Chapter 7 if you need a refresher.

152 | Chapter 8:Filtering and Sorting Rows

Expressions allow you to conjure up all sorts of filters. Just make sure that the
expression evaluates to a Boolean Series. A True means that the corresponding row
will be kept, and a False that it will be discarded.

Lets filter the tools DataFrame to keep our favorite tools, which happen to be
cordless tools by Makita:

tools.filter(

pl.col("cordless") & (1)
(pl.col("brand") == "Makita")

)

shape: (4, 6)

T T T T T T 1
| tool | product | brand | cordless | price | rpm |
| - [RSShN bt R RS A
| str | str | str | bool | 164 | 164 |
L 1] 1 1 1 |
I 1 T 1 1 T 1
Plunge Cut Saw	DSP600Z]	Makita	true	459	6300
Impact Driver	DTD1572	Makita	true	156	3000
Angle Grinder	DGA504z3	Makita	true	229	8500
Random Orbital Sander	DB0180ZJ]	Makita	true	199	11000
L I I I I I |

O You don't need to write pl.col("cordless") == True because the data type of
column cordless is already Boolean.

Commas Instead of Ampersands

If your expression is composed of multiple parts that are combined
using the AND operator (&), then you can alternatively pass those
parts as separate arguments to the df.filter() method. That
means that the last code snippet can be rewritten as:
tools.filter(
pl.col("cordless"),
pl.col("brand") == "Makita"
)
Depending on your preference, this might improve the readability
of your filter. Keep in mind that this doesn't work for the OR
operator (|).

Filtering Based on Column Names

The second way to use df.filter() is by specifying column names. If a column is
Boolean, such as the column cordless in the tools DataFrame, you can directly use
the column name without turning it into an expression. For example, to select all
cordless tools (not just those from Makita), you can use:

FilteringRows | 153

tools.filter("cordless")

shape: (5, 6)

I T T I T T 1
| tool | product | brand | cordless | price | rpm |
| - | - IR e N
| str | str | str | bool | 164 | 164 |
L 1 1 | 1 1]
I 1 1 I 1 1 1
Plunge Cut Saw	DSP600Z3]	Makita	true	459	6300
Impact Driver	pTD157Z	Makita	true	156	3000
Angle Grinder	DGA50423	Makita	true	229	8500
Nail Gun	DPSB2IN1-XJ	DeWalt	true	129	null
Random Orbital Sander	DB0186Z3J	Makita	true	199	11000
L | | 1 1 | |

You can specify multiple column names, but keep in mind that they all need to be
Boolean.

Polars Can’t Handle the Truthy

In the Python language, there and the concepts of truthy and falsy.
Whether a value is truthy or falsy depends on whether it would

" become True or False if cast to a Boolean. Falsy values include
False itself, the number zero, and empty sequences, collections,
and strings. Everything else is truthy. This means that Python code
such as (my_name != "") and (len(my_list) > 0) can be rewrit-
ten as my_name and my_list.

Because of this language concept, you might think that Python
Polars would allow non-Boolean columns and expressions when
filtering. However, Polars is built in Rust, and therefore more strict
than Python: only Boolean columns and expressions that construct
a Boolean Series can be used for filtering.

You can turn expression thats not Boolean into a Boolean one
by using comparisons. For example, to test for non-empty strings
and non-empty lists, you can use pl.col("my_name") != "" and
pl.col("my_list").list.len() > O, respectively.

Filtering Based on Constraints

The third way to use df.filter() is by specifying constraints. A constraint consists
of a column name and a value. Filtering again for cordless Makita tools using con-
straints looks like this:

tools.filter(cordless=True, brand="Makita")

shape: (4, 6)

T T T T T T
| tool | product | brand | cordless | price | rpm |

154 | Chapter 8:Filtering and Sorting Rows

str str str bool 164 164

I I I I I I I
L 1 1 1 1 1 |
) T T T T T 1
Plunge Cut Saw	DSP600Z]	Makita	true	459	6300
Impact Driver	DTD157Z	Makita	true	156	3000
Angle Grinder	DGA504z]	Makita	true	229	8500
Random Orbital Sander	DB0186ZJ	Makita	true	199	11000
L | | 1 | | 1

Effectively, the column names are specified as keyword arguments. Due to how the
Python language works, this has a couple of limitations:

o The column name can only contain letters (a-z, A-Z), digits (0-9), and under-
scores (_), cannot start with a digit, and cannot be a reserved keyword in Python
(e.g., if, class, global).

+ Constraints must appear last if you combine them with the other two ways
(expressions and column names).

o The value must always be specified, including True.

o Only equality comparisons are supported and must be written with one equals
sign (=) instead of two. On top of that, the Python style guide states that there
shouldn’t be any spaces around the equals sign.

Don't Constrain Yourself

Because of their limitations, we advise against using constraints.
Our recommendation is to use expressions for filtering. Theyre
more verbose, but at least you won't be constraining your expres-
siveness.

Sorting Rows

With sorting, you change the order of the rows, based on the values in one or
more columns. The number of rows remains the same. Sorting allows us to answer
questions that involve phrases such as “the most” or “the lowest”. For example, of
which brand do we have the most tools? Or: what is the tool with the lowest price? ???
on page 155 illustrates this operation conceptually.

image::drawing-sort.png

Most often you’ll be sorting numbers, but you can also sort strings, dates, and times.
You can also sort container data types such as structs and lists, as we’ll show you
later. In the next few sections we'll look at sorting based on a single column, multiple
columns, and expressions.

SortingRows | 155

https://peps.python.org/pep-0008/#other-recommendations

Sorting Based On a Single Column

To sort, you use the df.sort() method. The easiest way to invoke this method is by
specifying a column name:

tools.sort("price")

shape: (10, 6)

I T T | I T 1
| tool | product | brand | cordless | price | rpm |
| - | - I S R
| str | str | str | bool | 164 | 164 |
L 1 1 1 1 1]
I T T T T T 1
| Jigsaw | PST 900 PEL | Bosch | false | 79 | 3100 |
| Nail Gun | DPSB2IN1-XJ | DeWalt | true | 129 | null |
| . | . | .. | . | .. [.. I
| Plunge Cut Saw | DSP600Z3J | Makita | true | 459 | 6300 |
| Table Saw | DWE7485 | DeWalt | false | 516 | 5800 |
L | | 1 1 | |

As you see, by default the values are sorted in ascending order. Table 8-1 lists the
other arguments that the df . sort() method accepts.

Table 8-1. Common arguments for the method df.sort()

Argument Description

descending Sort in descending order. When sorting by multiple columns, can be specified per column by passing a
sequence of Booleans. Default False.

nulls_last Place null values last. Default False.
multithreaded Sort using multiple threads. Default True.?

maintain_order Whether the order should be maintained if elements are equal. Default False.

2 Only set this to False when your Polars is code is part of an application that's already multithreaded.

Sorting in Reverse

You can change the default order by setting the descending keyword to True:

tools.sort("price", descending=True)

shape: (10, 6)

T
brand | cordless

i tool i product i i price i rpm i
e L s el e e |
i Table Saw i DWE7485 i DelWalt i false i 516 i 5800 i
| Plunge Cut Saw | DSP600ZJ | Makita | true | 459 | 6300 |
i .I;l.ail Gun i BPSBZINl—XJ i BeWalt I .'.c.rue i "1.29 I ;ull I

156 | Chapter 8:Filtering and Sorting Rows

Jigsaw

| PST 900 PEL | Bosch | false
I I I

| 79
|

| 3100 |

Up or Down?

tools.sort("price", ascending=False)

TypeError: DataFrame.sort() got an unexpected keyword

argument 'ascending'

Make sure to use the descending keyword instead of ascending,
\ otherwise you get an error:

It’s easy to forget this, especially if you're used to Pandas, where you
can use ascending = False to reverse the order.

Sorting Based on Multiple Columns

To sort based on multiple columns, you specify multiple

arguments:

tools.sort("brand", "price")

shape: (10, 6)

I T T T T T 1
| tool | product | brand | cordless | price | rpm |
| - | --- I e R
| str | str | str | bool | 164 | 164 |
L 1 l 1 1 l]
I T T T T T 1
| Jigsaw | PST 900 PEL | Bosch | false | 79 | 3100

| Router | POF 1400 ACE | Bosch | false | 185 | 28000

| .. | .. [.. | .. [.. | .. I
| Angle Grinder | DGA504Z3 | Makita | true | 229 | 8500 |
| Plunge Cut Saw | DSP600Z3J | Makita | true | 459 | 6300 |
L 1 1 1 1 1]

column names as separate

Again, the default order is ascending for all columns that you specify. Setting descend
ing to True will apply to all columns. If you want to have different directions per

column, you can pass a list of Booleans to descending:

tools.sort("brand", "price", descending=[False, True])

shape: (10, 6)

i tool i product i brand i cordless i price i rpm

e RN rEerere
i Miter Saw i GCM 8 SJL i Bosch i false i 391 i 5500 i
| Router | POF 1400 ACE | Bosch | false | 185 | 28000 |
I Eandom Orbital Sander I BBOlSOZJ I Makita I Erue I 199 I 11000 i

Sorting Rows

157

Impact Driver | pTD157Z | Makita | true | 156 | 3000 |
| | | | |

Make sure that the number of Booleans is equal to the number of columns.

Sorting Based on Expressions

The df.sort() method also accepts one or more expressions:

tools.sort(pl.col("rpm") / pl.col("price"))

shape: (10, 6)

I T T T T T 1
| tool | product | brand | cordless | price | rpm

| -- | -- | - - SR I
| str | str | str | bool | i64 | 164

L 1 1 1] 1 1
I 1 T 1 T T 1
| Nail Gun | DPSB2IN1-XJ | DeWalt | true | 129 | null

Rotary Hammer	HR2230	Makita	false	199	1050
..
Random Orbital Sander	DB01806Z3J	Makita	true	199	11000
Router	POF 1400 ACE	Bosch	false	185	28000
L | | | | | |

Note

that expressions will not appear as columns in the DataFrame. Just as with

filtering, expressions will give you the most flexibility. However, from our experience,
you’ll most often sort on columns already present in the DataFrame.

Sorting Nested Data Types

You cannot directly sort nested data types, like Structs, Lists, and Arrays. You first
need to extract or create a value that is sortable. To demonstrate this, let’s create a
new DataFrame tools_collection that groups all the tools, by brand, into a List of
Structs:

tools_collection = tools.group_by("brand").agg(collection=pl.struct(pl.all()))
tools_collection

shape: (3, 2)

I
brand | collection

str | list[struct[6]]
|

T
DeWalt | [{"Nail Gun","DPSB2IN1-XJ","DeWalt",true,129,null}, {"Table ..
Makita | [{"Rotary Hammer","HR2230","Makita",false,199,1050}, {"Plung..
Bosch | [{"Miter Saw","GCM 8 SJL","Bosch",false,391,5500}, {"Jigsaw"..
]

If you try to sort the collection column directly, you'll get an error. You can,
however, sort the Lists by their length, because that’s an integer which can be sorted:

158 |

Chapter 8: Filtering and Sorting Rows

tools_collection.sort(pl.col("collection").list.len(), descending=True)

shape: (3, 2)

I I 1
| brand | collection |
|- - |
| str | list[struct[6]] |
L |]
I T 1
Makita	[{"Rotary Hammer","HR2230","Makita",false,199,1050}, {"Plung..
Bosch	[{"Miter Saw","GCM 8 SJL","Bosch",false,391,5500}, {"Jigsaw"..
DeWwalt	[{"Nail Gun","DPSB2IN1-XJ","DeWalt",true,129,null}, {"Table ..
L 1 |

Another example is to sort on the average price for each brand:

tools_collection.sort(
pl.col("collection").list.eval(
pl.element().struct.field("price")
). list.mean()

)
shape: (3, 2)
T
brand | collection
I | S
str | list[struct[6]]

!

T
Bosch | [{"Miter Saw","GCM 8 SJL","Bosch",false,391,5500}, {"Jigsaw","PST..
Makita | [{"Rotary Hammer","HR2230","Makita",false,199,1050}, {"Plunge Cut..
DeWalt | [{"Nail Gun","DPSB2IN1-XJ","DeWalt",true,129,null}, {"Table Saw",..

!

SortingRows | 159

Materialize First, Sort Second

Sometimes, just as with the last code snippet, things can get a
bit complicated and make you wonder whether you're sorting cor-
rectly. In those cases, it can be helpful to first construct a new
column using the df .with_columns() method to inspect the values
on which you're sorting:

tools_collection.with_columns(
mean_price=pl.col("collection").list.eval(
pl.element().struct.field("price")
). list.mean()
).sort("mean_price")

shape: (3, 3)

I I I 1
| brand | collection | mean_price |
| - | - |
| str | list[struct[6]] | f64 |
L 1 1]
I T T 1
Bosch	[{"Miter Saw","GCM 8 SJL","Bosch",f..	218.333333
Makita	[{"Rotary Hammer","HR2230","Makita"..	248.4
DeWalt	[{"Nail Gun","DPSB2IN1-XJ","DeWalt"..	322.5
L 1 | |

Turns out we were sorting on the correct values. Now we can safely
turn that df .with_columns() back into a df.sort().

Related Row Operations

Besides filtering and sorting, there are a few related row operations worth knowing
about:

Filtering Missing Values
Sometimes, your analysis or machine learning algorithm cannot handle missing
values. The method df.drop_nulls() keeps only rows without missing values.
You can specify which columns should be considered. For example:

tools.drop_nulls("rpm").height
9
By default all columns are considered, in which case it’s effectively the same as:
df.filter(pl.all_horizontal(pl.all().is_not_null()))
Slicing
Sometimes you want to keep the rows based on their position in the DataFrame,

irrespective of the values they contain. This is generally known as slicing, and
there are several methods for this:

160 | Chapter 8:Filtering and Sorting Rows

o With df.head() and df.tail() you keep the first or last few rows, respec-
tively. For example: the first five rows.

o With df.slice() you keep a range of rows. For example, from the third to
the seventh row.

o With df.gather() you keep individual rows. For example, the first, second,
and the fifth row.

o With df.gather_every() you keep a row every so often. For example, every
second row.

You can of course combine these methods to create complex slices. For
example:
(
tools.with_row_index()

.gather_every(2).head(3)
)

shape: (3, 7)

I T T T T T T 1
| index | tool | product | .. | cordless | price | rpm |
|] | - I I R
| u32 | str | str | | bool | 164 | 164 |
i : : = i : :
o	Rotary Hammer	HR2230	..	false	199	1050
2	Plunge Cut Saw	DSP606Z3	..	true	459	6300
4	Jigsaw	PST 900 PEL	..	false	79	3100
L 1 1 1 1 1 1]

The method df.with_row_index() is used here to clarify which row posi-
tions are kept.

Top and Bottom
With the methods df . top_k() and df .bottom_k(), you keep the k rows with the
largest or smallest value. For example, to keep the top three most expensive tools:
tools.top_k(3, by="price")
shape: (3, 6)

I I I I I I 1
| tool | product | brand | cordless | price | rpm |
| --- | --- [===] --- [== -]
| str | str | str | bool | 164 | 164 |
L 1 l 1 l |]
I T T T T T 1
Table Saw	DWE7485	DeWalt	false	516	5800
Plunge Cut Saw	DSP600ZJ	Makita	true	459	6300
Miter Saw	GcM 8 SIL	Bosch	false	391	5500
L 1 1 | | 1 1

This code is essentially tools.sort("price", descending=True) followed by
tools.head(3).

Related Row Operations | 161

Sampling
The method df.sample() filters the rows based on randomness. For example, to
keep only 20% of the rows:

tools.sample(fraction=0.2)

shape: (2, 6)

T T T T T T 1
| tool | product | brand | cordless | price | rpm |
- R (S Dt RS R
| str | str | str | bool | 164 | 164 |
L | 1 | 1 1]
I I 1 I 1 1 1
| Rotary Hammer | HR2230 | Makita | false | 199 | 1050 |
| Router | POF 1400 ACE | Bosch | false | 185 | 28000 |
1 I I I I I I

Semi Joins
Another way to filter is to semi-join with another DataFrame. For example, let’s
say you have a DataFrame saws which contains all sorts of saws. You can use this
to keep only the saws in the tools DataFrame:

saws = pl.DataFrame({"tool": ["Table Saw", "Plunge Cut Saw", "Miter Saw",
"Jigsaw", "Bandsaw", "Chainsaw", "Seesaw"]})
tools.join(saws, how="semi", on="tool")

shape: (4, 6)

I T T T T T 1
| tool | product | brand | cordless | price | rpm |
| -- | --- I e R
| str | str | str | bool | 164 | 164 |
L 1] | 1 1 1
I 1 1 I 1 T 1
Miter Saw	Gcm 8 sIL	Bosch	false	391	5500
Plunge Cut Saw	DSP600Z3J	Makita	true	459	6300
Jigsaw	PST 900 PEL	Bosch	false	79	3100
Table Saw	DWE7485	DeWalt	false	516	5800
L | | | | | |

You'll learn more about joining in general in Chapter 11.

Takeaways

In this chapter we've looked at filtering and sorting rows, and a few related opera-
tions. The key takeaways are:

« Filtering based on expressions give you the most flexibility.

« With filtering, expressions must evaluate to a Boolean Series.

Filtering based on constraints has many limits.

» Expressions, column names, and constraints separated by commas are combined
under the hood with the AND operator (&).

162 | Chapter 8:Filtering and Sorting Rows

o Sorting based on a single column is most often sufficient.

o Use descending = True to reverse the default sort order.

« To sort nested data types, first create or extract a sortable value from them.
o There are many related row operations, including slicing and sampling.

In the next chapter were going to look at how to work with special data types such as
Strings, Categoricals, and Temporal Data.

Takeaways | 163

CHAPTER9
Working with Special Data Types

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 12th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

In Chapter 2 we covered the basic data types that Polars supports and how they are
used to store information in DataFrames. However, certain data types deserve special
attention. Some have special operations that can be performed on them, and some
are optimized for specific use cases. In Polars, these special data types have their own
namespace in Expressions, meaning that you can access their methods and attributes
through the Expr namespace.

The special data types in Polars are String, Categorical, and Enum; the Temporal
data types Date, DateTime, Time, and Duration; and the nested data types Array,
List, and Struct. This chapter will dive into these special data types and their
operations.

165

mailto:sgrey@oreilly.com

Strings

A string is a data type for representing text, consisting of a sequence of characters,
digits, or symbols. One of the challenges of strings is their variable length. For
example, integers are a fixed length: you can calculate the memory address of the
next integer by adding the size of the integer to the current memory address. This
is not the case for strings. The length of a string is not known in advance, so the
memory address of the next string cannot be predicted purely from the data buffer.
This means that strings have to be stored differently than integers: contiguously, in
a data buffer. Contiguous memory is one long memory block where all the values are
stored in a row.

The view layout stores several attributes of a string value:

o Bytes 0 to 3 store the length of the string.

+ Bytes 4 to 7 store a copy of the first 4 bytes of a string. This allows for “fast paths,”
or optimizations, since these 4 bytes frequently contain the information needed
to make a quick comparison.

« Bytes 8 to 11 store the index of the data buffer where the string resides.

o Bytes 12 to 15 store the offset: the location within that data buffer where the
string starts.

With all this information, you can retrieve the string from the data buffer without
having to seek through memory!

Polars has another optimization for strings shorter than 12 bytes long. In this case,
the string is stored in the view layout itself, instead of in the data buffer. This is called
inlining. When its length is at most 12 bytes, the string can be stored in the 12 bytes
that follow the length. This prevents Polars from having to allocate memory and seek
in the data buffer, which are both costly operation.

Figure 9-1 illustrates how this storage works. Aerosmith fits inline and thus is not in
the data buffer. “Toots and the Maytals” is stored in the data buffer starting on the
22nd position after “The Velvet UnderGround"(where the first position is 0).

166 | Chapter9: Working with Special Data Types

"Aerosmith’ ———= [El Aero smith j

4 bybes 4 Euiftes ¥ bytes

[e'l Pre'h * Euppe_t‘ oP'Ps e’t s

[A

(o} QQJ

"Toots And The Maytals’ — { 21 | Teoot

!

[[‘Tkg VC[VC.t UnderGroundToots And The Mau/'r m.lsj

Figure 9-1. How short and long strings are stored in memory

Methods

Now that you know how strings are stored in physical memory, let’s look at what
operations are available for them.

Conversion

The methods in Table 9-1 allow you to convert strings to and from different data
types or formats.

Table 9-1. Conversion methods for the String data type

pl.Expr.str.decode(..) Decode a value using the provided encoding.
pl.Expr.str.encode(..) Encode a value using the provided encoding.
pl.Expr.str.json_decode(..) Parse string values as JSON.
pl.Expr.str.json_extract(..) Parse string values as JSON.
pl.Expr.str.json_path_match(..) Extract the first match of a JSON string with the

provided JSONPath expression.

Strings |

167

pl.Expr.str.strptime(..) Convert a String column into a Date/Datetime/
Time column.

pl.Expr.str.to_date(..) Convert a String column into a Date column.

pl.Expr.str.to_datetime(..) Convert a String column into a Datetime column.

pl.Expr.str.to_decimal(..) Converta String column into a Decimal column.

pl.Expr.str.to_integer(..) Convert an String column into an Int64 column
with base radix’.

pl.Expr.str.to_time(..) Convert a String column into a Time column.

pl.Expr.str.parse_int(..) Parse integers with base radix from strings.

2 Radix refers to the base of a number system, specifying how many digits it uses. In the context of converting strings to
integers, the radix determines how to interpret the symbols in the string. Without knowing the radix, the conversion can be
ambiguous. For example, “101” could represent different values depending on whether it's in decimal (101), binary (5), or
hexadecimal (272). The default radix is decimal (10).

Descriptive and Query Methods

The methods in Table 9-2 can return attributes of the string values in a column or
allow you to query for certain patterns.

Table 9-2. Descriptive methods for the String data type

Function or method Description

pl.Expr.str.contains(..) Check if strings in Series contain a substring that matches a regex.
pl.Expr.str.find(..) Return the index of the first substring in Ser+ies strings matching a pattern.
pl.Expr.str.len_bytes() Return the length of each string as the number of bytes.
pl.Expr.str.len_chars() Return the length of each string as the number of characters.
pl.Expr.str.lengths() Return the number of bytes in each string.

pl.Expr.str.n_chars() Return the length of each string as the number of characters.

pl.Expr.str.starts_with(..) Checkif string values start with a substring.

Manipulation

The methods in Table 9-3 allow you to manipulate the string values in a column.

Table 9-3. Manipulation methods for the String data type

Function or method Description

pl.Expr.str.concat(..) Vertically concatenate the string values in the column to a single string
value.

pl.Expr.str.contains_any(..) Use the aho-corasick algorithm to find matches.

pl.Expr.str.count_match(..) Count all successive non-overlapping regex matches.

pl.Expr.str.count_matches(..) Count all successive non-overlapping regex matches.

168 | Chapter9: Working with Special Data Types

pl.Expr.str.ends_with(..) Check if string values end with a substring.
pl.Expr.str.explode() Returns a column with a separate row for every string character.
pl.Expr.str.extract(..) Extract the target capture group from provided patterns.
pl.Expr.str.extract_all(..) Extract all matches for the given regex pattern.
pl.Expr.str.extract_groups(..) Extract all capture groups for the given regex pattern.
pl.Expr.str.ljust(..) Return the string left-justified in a string of length Length.
pl.Expr.str.lstrip(..) Remove leading characters.

pl.Expr.str.pad_end(..) Pad the end of the string until it reaches the given length.
pl.Expr.str.pad_start(..) Pad the start of the string until it reaches the given length.
pl.Expr.str.replace(..) Replace first matching regex/literal substring with a new string value.
pl.Expr.str.replace_all(..) Replace all matching regex/literal substrings with a new string value.
pl.Expr.str.replace_many(..) Use the aho-corasick algorithm to replace many matches.
pl.Expr.str.reverse() Returns string values in reversed order.
pl.Expr.str.rjust(..) Return the string right justified in a string of length length.
pl.Expr.str.rstrip(..) Remove trailing characters.

pl.Expr.str.slice(..) (reate subslices of the string values of a string series.
pl.Expr.str.split(..) Split the string by a substring.
pl.Expr.str.split_exact(..) Split the string by a substring using n splits.
pl.Expr.str.splitn(..) Split the string by a substring, restricted to returning at most n items.
pl.Expr.str.strip_chars(..) Remove leading and trailing characters.
pl.Expr.str.strip_chars_start(..) Remove leading characters.
pl.Expr.str.strip_chars_end(..) Remove trailing characters.

pl.Expr.str.strip_prefix(..) Remove prefix.

pl.Expr.str.strip_suffix(..) Remove suffix

pl.Expr.str.to_lowercase() Modify the strings to their lowercase equivalent.
pl.Expr.str.to_titlecase() Modify the strings to their titlecase equivalent.
pl.Expr.str.to_uppercase() Modify the strings to their uppercase equivalent.
pl.Expr.str.zfill(..) Pad the start of the string with zeros until it reaches the given length.
Examples

Let’s dive into some examples. First you'll create a DataFrame with some sample data:

import

as

df = pl.DataFrame({
"raw_text": [

Data Science is amazing ",

"Data_analysis > Data entry",

Strings | 169

" Python&Polars; Fast",
1

b
print(df)

shape: (3, 1)

raw_text

str

Data Science is amazing
Data_analysis > Data entry
Python&Polars; Fast

This example DataFrame showcases some of the string operations available in Polars.
Start by cleaning up the strings:

df = df.with_columns(
pl.col("raw_text")
.str.strip_chars() (1]
.str.to_lowercase() (2]
.str.replace_all("_", " ") (3]
.alias("processed_text") (4]

)
print(df)

shape: (3, 2)

raw_text processed_text

str str

Data Science is amazing
Data_analysis > Data entry
Python&Polars; Fast

data science is amazing
data analysis > data entry
python&polars; fast

© The strip_chars() method removes leading and trailing characters from the
string. Since you haven't provided any characters to strip, it defaults to white-
space.

® Casting everything to lowercase can make it easier to work with the data, because
then it’s case-insensitive.

© You may want to replace all underscores with spaces when working with file-
names or URLs.

O Creates a new column with the processed text and name it appropriately.

170 | Chapter 9: Working with Special Data Types

Now that you have clean data to work with, let’s get into manipulating and selecting
it.
One common operation is slicing and splitting strings:

print(

df.with_columns(
pl.col("processed_text")
.str.slice(0, 5)
.alias("first_5_chars"),
pl.col("processed_text")
.str.osplit(" ")
.list.get(0)
.alias("first_word"),
pl.col("processed_text")
.strosplit(" ")
.list.get(1) (4]
.alias("second_word"),

)
shape: (3, 5)

T T T T T 1
raw_text	processed_tex	first_5_chars	first_word	second_word
--	t	---	---	---
str	---	str	str	str
	str			
i i : : i :				
Data Science	data science	data	data	science

| is am. | is amaz.. | | | |
| Data_analysis | data analysis | data | data | analysis

| > Data.. | > data.. | | | |
| Python&Polars; | python&polars | pytho | python&polars | fast

| Fast | ; fast | | 5 I I
1 I I I I |

© From the string values in the processed_text column, you slice the first 5
characters and save them in the first_5_chars column.

® You split the string values in the processed_text column on spaces. This creates
a list strings with a length of the amount of spaces in the string + 1.

© You get the first element from that list of strings, which will be the first word.

O You get the second element from that list of strings.
You can also query the string for some information about it, as follows:
print(

df.with_columns(
pl.col("processed_text")

Strings | 171

)
shape: (3, 5)

.str.len_chars() (1)
.alias("amount_of_chars"),
pl.col("processed_text")
.str.len_bytes() (2]
.alias("amount_of_bytes"),
pl.col("processed_text")
.str.count_matches("a") (3]
.alias("count_a"),

T T T T T 1
raw_text	processed_text	amount_of_char	amount_of_byte	count_a
---	---	s	s	---
str	str	---	---	u32
		u32	u32	
i : : : : :				
Data Science is	data science	23	23	4
amazing	is amazing			
Data_analysis >	data analysis	26	26	6
pata entry	> data entry			
python&Polars;	python&polars;	19	19	2
Fast	fast			
L | | | | |

© Calculates the amount of characters in the string.

© Calculates the amount of bytes that the string takes in memory.

©® Counts the times the letter

« »

a” occurs in the string.

172

Chapter 9: Working with Special Data Types

Polars also supports regex operations. A regex, short for “regular expression’, is a
sequence of characters that defines a search pattern. Primarily used for string search-
ing and manipulation, regexes let you identify, match, and even modify text based
on specific patterns, efficiently processing complex text tasks. The sample code below

It's good to know that len_bytes() is much more performant than
len_chars(). len_bytes() has a time complexity of O(1), whereas
len_chars() has a time complexity of O(n).

Here, O(1) and O(n) are notations used in computer science to
describe the worst-case time complexity of an algorithm. O(1)
means that the time it takes to execute the algorithm is constant,
regardless of the size of the input. O(n) means that the time it takes
to execute the algorithm is linearly proportional to the size of the
input. The time complexity of methods differs because the number
of bytes can be retrieved from the view layout, whereas the number
of characters has to be calculated by iterating over the string in the

data buffer.

In the example above, the results for len_chars() and
len_bytes() are the same, because youre working with ASCII
text. When working with non-ASCII text, the length in bytes won't
be the same as the length in characters, so you may want to use
len_chars() instead.

simply finds all the hashtags in a string.

df = pl.DataFrame({

b

"post": ["Loving #python and #polars!", "A boomer post without a hashtag"]

hashtag_regex = r"#(\w+)" (1]

df.with_columns(
pl.col("post").str.extract_all(hashtag_regex).alias("hashtags") (2]

)

shape: (2, 2)

post

str

hashtags

Loving #python and #polars!
A boomer post without a hashtag

["#python", "#polars"]

T
|

|

| list[str]
|

| 1

I

You define a regex pattern that matches a hashtag followed by a word. Here the
\w matches any word character. A word character is a character a-z, A-Z, 0-9,

Strings

including _ (underscore). The + means that the previous character can occur one
or more times, capturing the entire word and not just the first character.

® You extract all matches of the regex pattern from the post column and save them
in the hashtags column.

Categoricals

The Categorical data type encodes columns of string values efficiently. With the
String data type, all the values are stored in physical memory separately, even if they
are the same. The Categorical type uses a string cache.

A string cache is a dictionary behind the scenes that stores the unique string values
and accompanying UInt32 representations for all unique strings in that column.
Instead of storing the string for all values in the column, the smaller int representa-
tion is used for efficient storage. The int is called the physical representation, whereas
the string is called the lexical representation.

If a column of data contains a lot of string values but few unique string values, this
allows for more efficient storage and faster operations (because string comparisons
are expensive). Categoricals are stored in two parts: a dictionary and indices.

Let’s explore the Categorical data type and its methods. First, you'll create a Data-
Frame with a Categorical column. Additionally you’ll also create a column with it’s
physical representation.

df1 = pl.DataFrame(
{"categorical_column": ["valuel", "value2", "value3"]},
schema={"categorical_column": pl.Categorical},

)
print(
df1.with_columns(
pl.col("categorical_column")
.to_physical()
.alias("categorical_column_physical")
)
)

shape: (3, 2)

categorical_column

categorical_column_p..

cat u32
valuel 0
value2 1
value3 2

174 | Chapter 9: Working with Special Data Types

Methods

The Categorical data type has the following two methods:

Table 9-4. Methods for the Categorical data type

Function or method Description

Expr.cat.get_categories() Get the categories stored in this data type.

Expr.cat.set_ordering(..) Determine how this categorical series should be sorted.

Examples

The order of strings in the column determines what the Categorical and the dictio-
nary will look like. Even if a column of a different DataFrame contains the same
unique strings, the Categorical will be different if the order is not the same. That’s
because the order of the dictionary, and thus its physical representation (the int), is
different:

df2 = pl.DataFrame(
{"categorical_column": ["value4", "value3", "value2"]},
schema={"categorical_column": pl.Categorical},

)
print(
df2.with_columns(
pl.col("categorical_column")
.to_physical()
.alias("categorical_column_physical")
)
)

shape: (3, 2)

categorical_column | categorical_column_p..

cat u32
value4d 0
value3 1
value2 2

For this reason, trying to combine two different Categoricals will cause a Categori
calRemappingWarning:

df1.join(df2, on="categorical_column")

CategoricalRemappingWarning: Local categoricals have different encodings, expens
ive re-encoding is done to perform this merge operation. Consider using a String
Cache or an Enum type if the categories are known in advance

shape: (2, 1)

Categoricals | 175

categorical_column

value3
value2

T 1
| |
| |
| cat

L]
I 1
| |
| |
L I

To combine two Categoricals, you need to make their string caches match by creating
them under the same string cache. You can do this with a global string cache. A
global string cache is a string cache that is shared across all Categoricals. This way,
all Categoricals tap into the same string cache, preventing any mismatch. The global
string cache is turned off by default, because using the same string cache for all
Categoricals incurs a performance penalty. If the string cache is a global object, it
needs to be locked while it’s accessed, making threads wait for each other, which
results in longer loading times.

The example beneath shows how to create categoricals under the same string cache
with a StringCache context manager:

with pl.StringCache():
df1 = pl.DataFrame(
{
"categorical_column": ["value3", "value2", "valuel"],
"other": ["a", "b", "c"],
1,
schema={"categorical_column": pl.Categorical, "other": pl.String},
)
df2 = pl.DataFrame(
{

"categorical_column": ["value2", "value3", "valued"],
"other": ["d", "e", "f'],
1,
schema={"categorical_column": pl.Categorical, "other": pl.String},

)

Even outside the global string cache's scope, you can now join the
two dataframes containing Categorical columns
df1.join(df2, on="categorical_column")

shape: (2, 3)

T T T 1
categorical_column	other	other_right
]	
cat	str	str
i : : :		
value2	b	d
value3	a [
L I L |

You can also enable the global string cache, using:

176 | Chapter 9: Working with Special Data Types

pl.enable_string_cache()

Note, however, that this means the global string cache will always be used, which can
be a suboptimal solution compared to using the context manager.

To retrieve the unique categories that the Categorical column contains, enter the
Categorical namespace, and call .get_categories().

df2.select(pl.col("categorical_column").cat.get_categories())

shape: (3, 1)

categorical_column

str

value2
value3
value4d

The last relevant attribute is the way the column is ordered in a sort(). There are two
options:

o Physical (default): The physical (int) representation is used to sort.

o Lexical: The string value is used to sort.

You can set these options as soon as you create the Categorical datatype. You can
swap by casting the Categorical to the other variant.

First, prepare one of the dataframes:

sorting_comparison_df = (

df2

.select(
pl.col("categorical_column")
.alias("categorical_lexical")

)

.with_columns(
pl.col("categorical_lexical")
.to_physical()
.alias("categorical_physical")

)

)

print(sorting_comparison_df)

shape: (3, 2)

T T
| categorical_lexical | categorical_physical

| |
| cat | u32
L 1
I T

Categoricals | 177

| value2
| value3
| value4
L I

w o

Below, the Categorical column is sorted on physical representation, which can be
seen in the categorical_physical column:

print(
sorting_comparison_df
.with_columns(
pl.col("categorical_lexical")
.cast(pl.Categorical("physical")) # The default option
)
.sort(by="categorical_lexical")

)
shape: (3, 2)

categorical_lexical

categorical_physical

cat u32
value3 0
value2 1
value4d 3

Here it is sorted on lexical representation, which can be seen in the categorical_col
umn column:

print(
sorting_comparison_df
.with_columns(
pl.col("categorical_lexical")
.cast(pl.Categorical("lexical"))
)
.sort(by="categorical_lexical")

)
shape: (3, 2)

categorical_lexical

categorical_physical

cat u32
value2 1
value3 0
value4d 3

178 | Chapter9: Working with Special Data Types

Enum

If you know the categories of a column in advance, you can use the Enum data type.
This data type currently uses the Categorical data type under the hood, but may later
get its own implementation.

enum_dtype = pl.Enum(["Polar", "Panda", "Brown"])
enum_series = pl.Series(
["Polar", "Panda", "Brown", "Brown", "Polar"], dtype=enum_dtype

)

cat_series = pl.Series(
["Polar", "Panda", "Brown", "Brown", "Polar"], dtype=pl.Categorical

)

Enums are a new data type in Polars and at the time of writing don’t have their own
namespace yet.

Temporal Data

Temporal data types are specialized formats for working with time-based information,
like points and intervals in time. These types allow for comparison, arithmetic, and
other time-specific operations.

Polars uses several data types to store temporal data show in Table 9-5.

Table 9-5. Temporal data types

Data Description Example Storage

type

Date Represents a calendar date without a time of ~ Birthdays int32 representing the amount of days
day. since the UNIX epoch (1970-01-01).

Date Represents a calendar date and also a time of ~ Timestamps in int64 since the Unix epoch and can

time day on that date. logging have different units such as ns, us, ms.

Dura Represents a time interval, the difference Elapsed time int64 that is created when subtracting

tion between two points in time. It's similar to between two events Date/Datetime.
timedelta in Python.

Time Focuses only on time of day. Scheduling of daily ~ int64 representing nanoseconds since
tasks. midnight.

Methods

The Temporal data namespace has a variety of methods for converting, describing,
and manipulating data.

Temporal Data | 179

Conversion
The following methods allow you to convert temporal data to and from other data

types or formats.

Table 9-6. Methods for conversion to and from other data types.

Function or method Description

Expr.dt.cast_time_unit(..) Castthe underlying data to another time unit.

Expr.dt.strftime(..) Convert a Date/Time/Datetime column into a String column with the given
format.
Expr.dt.to_string(..) Convert a Date/Time/Datetime columninto a String column with the given
format.
Descriptive

The following methods can return attributes of the temporal data.

Table 9-7. Methods for describing temporal data.

Expr.dt.base_utc_offset() Base offset from UTC.

Expr.dt.date() Extract date from date(time).

Expr.dt.datetime() Return Datetime.

Expr.dt.day() Extract day from underlying Date representation.
Expr.dt.days() Extract the total days from a Duration type.
Expr.dt.dst_offset() Additional offset currently in effect (typically due to daylight saving time).
Expr.dt.epoch(..) Get the time passed since the Unix epoch in the given time unit.
Expr.dt.hour() Extract the hour from underlying DateTime representation.
Expr.dt.hours() Extract the total hours from a Duration type.
Expr.dt.is_leap_year() Determine whether the year of the underlying date is a leap year.
Expr.dt.iso_year() Extract ISO year from underlying Date representation.
Expr.dt.microsecond() Extract microseconds from underlying DateTime representation.
Expr.dt.microseconds() Extract the total microseconds from a Duration type.
Expr.dt.millisecond() Extract milliseconds from underlying DateTime representation.
Expr.dt.milliseconds() Extract the total milliseconds from a Duration type.
Expr.dt.minute() Extract minutes from underlying DateTime representation.
Expr.dt.minutes() Extract the total minutes from a Duration type.
Expr.dt.month() Extract the month from underlying Date representation.
Expr.dt.nanosecond() Extract nanoseconds from underlying DateTime representation.
Expr.dt.nanoseconds() Extract the total nanoseconds from a Duration type.
Expr.dt.ordinal_day() Extract ordinal day from underlying Date representation.

180 | Chapter9: Working with Special Data Types

Expr.dt.quarter() Extract quarter from underlying Date representation.
Expr.dt.second(..) Extract seconds from underlying DateTime representation.
Expr.dt.seconds() Extract the total seconds from a Duration type.
Expr.dt.time() Extract time.
Expr.dt.timestamp(..) Return a timestamp in the given time unit.
Expr.dt.total_days() Extract the total days from a Duration type.
Expr.dt.total_hours() Extract the total hours from a Duration type.
Expr.dt.total_microseconds() Extract the total microseconds from a Duration type.
Expr.dt.total_milliseconds() Extract the total milliseconds from a Duration type.
Expr.dt.total_minutes() Extract the total minutes from a Duration type.
Expr.dt.total_nanoseconds() Extract the total nanoseconds from a Duration type.
Expr.dt.total_seconds() Extract the total seconds from a Duration type.
Expr.dt.year() Extract year from underlying Date representation.
Manipulation

The following methods allow you to manipulate temporal data.

Table 9-8. Methods for manipulating temporal data.

Function or method Description

Expr.dt.replace_time_zone(..) Replace time zone for an expression of type Datetime.

Expr.dt.combine(..) (reate a naive Datetime from an existing Date/Datetime expression and a
Time.
Expr.dt.month_start() Roll backward to the first day of the month.
Expr.dt.month_end() Roll forward to the last day of the month.
Expr.dt.offset_by(..) Offset this date by a relative time offset.
Expr.dt.round(..) Divide the Date/DateTime range into buckets.
Expr.dt.truncate(..) Divide the Date/DateTime range into buckets.
Expr.dt.week() Extract the week from the underlying Date representation.
Expr.dt.weekday() Extract the week day from the underlying Date representation.
Expr.dt.with_time_unit(..) Set time unit of an expression of type DateTime or Duration.
Expr.dt.convert_time_zone(..) Convert to given time zone for an expression of type DateTime.
Examples

The field of time series is grand, and we can’t cover it all. However, we can cover some
of the more common operations used in time-series analysis and illustrate how they

Temporal Data | 181

are handled in Polars. In the coming example you’ll mostly work with dates, but the
methods we're about to show you should work for other temporal data types as well.

Loading from CSV

To get started with temporal data in Polars, you first need to load it. You can
load temporal data from a CSV file. Use the read_csv method and set the
try_parse_dates parameter to True:

pl.read_csv("data/all_stocks.csv", try_parse_dates=True)

shape: (18_476, 8)

I T T T T T T 1
| symbol | date | open | .. | close | adj close | volume

T | --- |- | --- | -
| str | date | fo4 | | fea | fo4 | 164 |
L | 1] 1] 1 1
I T T T T T 1 1
ASML	1999-01-04	11.765625	..	12.140625	7.535689	1801867
ASML	1999-01-05	11.859375	..	13.96875	8.670406	8241600
ASML	1999-01-06	14.25	..	16.875	10.474315	16400267
ASML	1999-01-07	14.742188	..	16.851563	10.459769	17722133
ASML	1999-01-08	16.078125	..	15.796875	9.805122	10696600
.	.	.. I	.	. I		
Tsm	2023-06-26	102.019997	..	100.110001	99.125954	8560000
Tsm	2023-06-27	101.150002	..	162.080002	101.076591	9732000
Tsm	2023-06-28	100.5	..	100.919998	99.927986	8160900
Tsm	2023-06-29	101.339996	..	100.639999	99.650742	7383900
Tsm	2023-06-30	101.400002	..	100.919998	99.927986	11701700
L | | | | | | |

Here, you can see by the data type in the column header that the date column has
been read in the correct format.

Converting to and from string
Alternatively, to parse a date from a string, you can do the following:

df = pl.DataFrame({
"date_str": ["2023-12-31", "2024-02-29"]
H

df = df.with_columns(
pl.col("date_str").str.strptime(pl.Date, "%Y-%m-%d").alias("date")

)
print(df)

shape: (2, 2)

I I

date_str	date
L	
I T	

1
|
|
str date |
]
1
|

2023-12-31 | 2023-12-31

182 | Chapter9: Working with Special Data Types

| 2024-02-29 | 2024-02-29 |
L 1 |

If you want to write a date to a string in a certain format, you can do the following:

df = df.with_columns(
pl.col("date").dt.to_string("%d-%m-%Y").alias("formatted_date")
)

print(df)
shape: (2, 3)

I T T 1
date_str	date	formatted_date
str	date	str
L 1 1]		
I T T 1		
2023-12-31	2023-12-31	31-12-2023
2024-02-29	2024-02-29	29-02-2024
L 1 | |

Here, the formatting you provide to the to_string() method is %d-%m-%Y, which
means that the day, month, and year are separated by hyphens. The options for
formatting are defined in the chrono strftime documentation, which Polars uses.

Generating Ranges

Instead of loading data from other sources, it’s also possible to generate date ranges
and datetime ranges directly in Polars:

from import date
df = pl.DataFrame(
{

"date": pl.date_range(
start=date(2023,12,31), @
end=date(2024,1,15),
interval="1w",
eager=True, (3]

)s

}

)
print(df)

shape: (3, 1)
1
date

| date |

e ——
1

| 2023-12-31 |
| 2024-01-07 |
| 2024-01-14 |

Temporal Data | 183

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

© For the start and end parameters, you can use the datetime.date type from the
Python standard library.

® The interval parameter can be set to a string that represents the interval: for
example, “1w” for one week, “1d” for one day, “1h” for one hour, and so on.

© Set the eager parameter to True to return the range as a Series object, or False to
return an Expression instead. Since we're working with a DataFrame constructor
here, we can’t use an Expression because it would lead to a TypeError: passing
Expr objects to the DataFrame constructor is not supported.

Time Zones

One of the most unpleasant things about working with temporal data is time zones.
Daylight saving time in particular can be a real pain. For this reason, Universal Time
Coordinated (UTC) is often used in time-series analysis, because it’s a universal fixed
timezone. From there you can convert to any timezone you want.

In the next example we've got a dataset that’s in UTC, and we want to convert it to the
timezone of Amsterdam: Central European Time (CEST).

df = pl.DataFrame(o

{

"utc_mixed_offset_data": [
"2021-03-27T00:00:00+0100",
"2021-03-28T00:00:00+0100",
"2021-03-29T00:00:00+0200",
"2021-03-30T00:00:00+0200",

1

}
)
df = (
df .with_columns(
pl.col("utc_mixed_offset_data")

.str.to_datetime("%Y-%m-%dT%H:%M: %S%z") @

.alias("parsed_data")

).with_columns(
pl.col("parsed_data")

.dt.convert_time_zone("Europe/Amsterdam") (3]

.alias("converted_data")

)
)
print(df)

shape: (4, 3)

T T T
| utc_mixed_offset_data | parsed_data | converted_data

| str | datetime[ps, UTC] | datetime[ps,

184 | Chapter9: Working with Special Data Types

Europe/Amsterdam]

I I I
1 1]
T T 1
2021-03-27T00:00:00+0100 | 2021-03-26 23:00:00 UTC | 2021-03-27 00:00:00 CET |
2021-03-28T00:00:00+0100 | 2021-03-27 23:00:00 UTC | 2021-03-28 00:00:00 CET |
2021-03-29T00:00:00+0200 | 2021-03-28 22:00:00 UTC | 2021-03-29 00:00:00 CEST |

I I I

1 | |

2021-03-30T00:00:00+0200 | 2021-03-29 22:00:00 UTC | 2021-03-30 00:00:00 CEST

@ We create a DataFrame with a column that contains dates with mixed offsets
from strings.

® We parse the strings to a datetime with the str.to_datetime() method. The %z
in the format string is used to parse the timezone offset.

© We convert the parsed datetime to the timezone of Amsterdam with the dt.con
vert_time_zone() method.

In the resulting DataFrame, you can see that the dates have been converted to the
timezone of Amsterdam. The offset has been parsed according to Central Eastern
Time (CET) and Central European Summer Time (CEST).

In Chapter 10 we'll show you how to summarize and aggregate temporal data using
window functions, dynamic group by operations, and more!

List
There are three ways to store a collection of data points in a single column: using an

Array, a List, or a Struct.

The List type can contain lists of varying lengths with values of the same data type.

pl.List != list

The Polars List, which holds only values of the same data type, is

\ different from the Python list, which can contain values of differ-
ent data types. It is possible to achieve the same in Polars by using
the Object type to store a Python list, but this is not recommended,
because the contents will be binary objects of serialized Python
data. This means that there are no special list manipulations, there’s
no room for the optimizations that normally apply to Polars data
types, and all functions performed on it have to be done in Python,
which is slower than running them in Rust.

The List type is implemented in memory as Arrow’s Variable Size List Layout. Similar
to the String type, it has a contiguous data buffer and an offset buffer pointing to the
memory locations of the values in the data buftfer.

List | 185

Methods

Table 9-9. Methods for the List type

Expr.list.all() Evaluate whether all Boolean values in a list are true.

Expr.list.any() Evaluate whether any Boolean value in a list is true.

Expr.list.drop_nulls() Drop all null values in the list.

Expr.list.arg_max() Retrieve the index of the maximum value in every sublist.

Expr.list.arg_min() Retrieve the index of the minimal value in every sublist.

Expr.list.concat(..) Concatenate the arrays in a Series in linear time.

Expr.list.contains(..) Check if sublists contain the given item.

Expr.list.count_match(..) Count how often the value produced by element occurs.

Expr.list.count_matches(..) Count how often the value produced by element occurs.

Expr.list.diff(..) Calculate the first discrete difference between shifted items of every sublist.

Expr.list.eval(..) Run any Polars expression against the list's elements.

Expr.list.explode() Return a column with a separate row for every list element.

Expr.list.first() Get the first value of the sublists.

Expr.list.gather(..) Take sublists by multiple indices.

Expr.list.get(..) Get the value by index in the sublists.

Expr.list.head(..) Slice the first n values of every sublist.

Expr.list.join(..) Join all string items in a sublist and place a separator between them.

Expr.list.last() Get the last value of the sublists.

Expr.list.len() Return the number of elements in each list.

Expr.list.lengths() Return the number of elements in each list.

Expr.list.max() Compute the max value of the lists in the array.

Expr.list.mean() Compute the mean value of the lists in the array.

Expr.list.min() Compute the min value of the lists in the array.

Expr.list.reverse() Reverse the arrays in the list.

Expr.list.sample(..) Sample from this list.

Expr.list.set_difference(..) Compute the set difference between the elements in this list and the
elements of other.

Expr.list.set_intersection(..) Compute the setintersection between the elements in this list and the
elements of other.

Expr.list.set_symmetric_dif Compute the set summetric difference between the elements in this list and

ference(..) the elements of other.

Expr.list.set_union(..) Compute the set union between the elements in this list and the elements of
other.

Expr.list.shift(..) Shift list values by the given number of indices.

186 | Chapter9: Working with Special Data Types

Expr.list.slice(..) Slice every sublist.

Expr.list.sort(..) Sort the lists in this column.

Expr.list.sum() Sum all the lists in the array.

Expr.list.tail(..) Slice the last n values of every sublist.

Expr.list.take(..) Take sublists by multiple indices.

Expr.list.to_array(..) Convert a List column into an Array column with the same inner data

type.

Expr.list.to_struct(..) Convert the Series of type List to a Series of type Struct.
Expr.list.unique(..) Get the unique/distinct values in the list.
Examples

Let’s show you some of the methods you can use with the List type.

You can use the all and any methods to evaluate whether all or any Boolean values in
a list are true:

bool_df = pl.DataFrame({
"values": [[True, True], [False, False, True], [False]]

H
print(
bool_df
.with_columns(
pl.col("values")
.list.all()
.alias("all values"),
pl.col("values")
.list.any()
.alias("any values")
)
)
shape: (3, 3)
T T T 1
| values | all values | any values |
[--- | --- | --- |
| list[bool] | bool | bool |
L | 1 1
I I T 1
[true, true]	true	true
[false, false, true]	false	true
[false]	false	false
L | L I

A powerful method that combines well with any() and all() is the eval method.
This method allows you to run any Polars expression against the list’s elements. In the
following example, we'll use the eval method to multiply the list elements by 10:

List | 187

df = pl.DataFrame({
"values": [[10, 20], [30, 40, 50], [60]]
b
print(
df
.with_columns(
pl.col("values")
.list.eval(
pl.element() > 40, (1)
parallel=True, (2]

)

.alias("values > 40")

)

.with_columns((3]
pl.col("values > 40")
dist.all()) O
.alias("all values > 40")

)
shape: (3, 3)

T T T 1
values	values > 460	all values > 40
list[i64]	list[bool]	bool

L l 1]
I T 1 1
| [10, 20] | [false, false] | false

| [30, 40, 50] | [false, false, true] | false

| [60] | [true] | true |
f I I I

The element() method is used to access the elements of the list.

Because the parallel parameter is set to True, the eval() method will run the
expression in parallel. This is off by default, but can seriously speed up your
calculations if the expression you run allows for parallelism.

© To ensure parallel processing within with_columns(), any further modifications
to a newly created column require a separate subsequent with_columns() call.
O The all() method is used to evaluate whether all Boolean values in a list are true.

You can unpack a list to separate rows using the explode method:

df.explode("values")
shape: (6, 1)

188 | Chapter9: Working with Special Data Types

10
20
30
40
50
60

Array

The Array type can hold arrays of fixed lengths with values of the same data type. It
is analogous to Numpy’s ndarray type. The Array type is implemented in memory by
Arrow’s Fixed Size List Layout. For this type, the data buffer is also contiguous, just
like List, but the offset buffer isn’t needed because the length is constant. This make
the type more memory-efficient and performant, because there are fewer lookups to

load the relevant data.

Methods

The Array type has a variety of methods for converting, describing, and manipulating

data.

Table 9-10. Methods for the Array type

Function or method

Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.
Expr.

arr.

arr

arr

arr.

arr

arr.

arr.

arr.

arr.

arr.

arr

arr.

arr.

arr.

arr.

arr.

max()

.min()

.median()

sum()

.std(..)

to_list()
unique(..)
var(..)
all()
any()

.sort(..)

reverse()
arg_min()
arg_max()
get(..)
first()

Compute the max values of the sub-arrays.
Compute the min values of the sub-arrays.
Compute the median of the values of the sub-arrays.
Compute the sum values of the sub-arrays.

Compute the std of the values of the sub-arrays.

Convert an Array column into a List column with the same inner data type.

Get the unique/distinct values in the array.

Compute the variance of the values of the sub-arrays.

Evaluate whether all Boolean values are true for every subarray.
Evaluate whether any Boolean value is true for every subarray.
Sort the arrays in this column.

Reverse the arrays in this column.

Retrieve the index of the minimal value in every sub-array.
Retrieve the index of the maximum value in every sub-array.
Get the value by index in the sub-arrays.

Get the first value of the sub-arrays.

Array

189

Expr.arr.last() Get the last value of the sub-arrays.
Expr.arr.join(..) Join all string items in a sub-array and place a separator between them.
Expr.arr.explode() Returns a column with a separate row for every array element.
Expr.arr.contains(..) Check if sub-arrays contain the given item.
Expr.arr.count_matches(..) Counthow often the value produced by element occurs.
Expr.arr.to_struct(..) Convert the Series of type Array to a Series of type Struct.
Expr.arr.shift(..) Shift array values by the given number of indices.
Examples

In order to showcase the Array type, create a DataFrame with an Array column. In
the following example, you’'ll create a DataFrame with an Array column that contains
arrays of integers that represent temperatures in different locations:

df = pl.DataFrame([

pl.Series(
"location",
["Paris", "Amsterdam", "Barcelona"],
dtype=pl.String

)J
pl.Series(
"temperatures",
[
[23, 27, 21, 22, 24, 23, 22],
[17, 19, 15, 22, 18, 20, 21],
[30, 32, 28, 29, 34, 33, 31]
1,
dtype=pl.Array(pl.Int64, width=7),
)s
D
print(df)

shape: (3, 2)

T
location | temperatures

- | I

str | array[i64, 7]
1
T

Paris | [23, 27, .. 22]

Amsterdam | [17, 19, .. 21]
Barcelona | [30, 32, .. 31]
|

Some methods that are available for the Array type are median, max, and arg_max.

print(

df
.with_columns(

190 |

Chapter 9: Working with Special Data Types

pl.col("temperatures")
.arr.median()
.alias("median"),
pl.col("temperatures")
.arr.max()

.alias("max"),
pl.col("temperatures")
.arr.arg_max()
.alias("warmest_weekday")

)
shape: (3, 5)

I T T T T 1
location	temperatures	median	max	warmest_weekday
-	.- R I			
str	array[i64, 7]	fe4	i64	u32
L		1]	
I T T 1 1 1				
Paris	[23, 27, .. 221	23.06	27	1
Amsterdam	[17, 19, .. 21]	19.6	22	3
Barcelona	[30, 32, ..31]	31.06	34	4
L | | | 1 |

In the resulting DataFrame, you can see that the median column contains the median
temperature for each location, the max column contains the maximum temperature
for each location, and the warmest_weekday column contains the index of the warm-
est weekday for each location.

Structs

Structs are a nested type for storing multiple columns in a single column. On the row
level, this can be seen as a dictionary. The keys are the column names, which are
called fields, and the values are the values of the field for that row. The struct data
type is the idiomatic way of working with multiple columns in Polars. Polars runs on
expressions, and by definition, an expression can only take one column as input and
give one column as output (Fn(Series) -> Series).

By encapsulating multiple columns within a struct, you can still do multi column
operations, while keeping the expression paradigm intact. Casting multiple columns
to a struct does not duplicate data, but allows the new struct type to point to existing
data buffers in memory, ensuring efficient memory usage.

Methods

The Struct type has the following methods:

Struts | 191

Table 9-11. Methods for the struct type

Function or method Description

Expr.struct.field(..) Retrieve a Struct field as a new Series.
Expr.struct.json_encode() Convert this struct to a string column with json values.
Expr.struct.rename_fields(..) Rename the fields of the struct.

Examples

To play around with structs, you have to make them first. There are a number of
methods that return structs, or you can create them by constructing a DataFrame
using a dictionary:

df = pl.DataFrame({
"struct_column": [
{"a": 1, "b": 2},
{"a": 3, "b": 4},
{"a": 5, "b": 6},
1
b
print(df)

shape: (3, 1)

 —
struct_column
struct[2]

N —
1

| {1,2} |
| {3,4} |
| {5.6} |

You can retrieve values from a struct using the field method:

df.select(pl.col("struct_column").struct.field("a"))
shape: (3, 1)

| —

I I
| --- |
| i64 |

| —
1

| IN—

(]

.

v W

To return multiple columns, you can use the unnest method. Note that the unn

est method is not part of the struct namespace and should be called on the Data-
Frame/LazyFrame/Series level.

192 | Chapter9: Working with Special Data Types

df = df.unnest("struct_column")
print(df)

shape: (3, 2)
1 1

I I I
| oo |- |
| 164 | 164 |

I I I
| |
I I

|
1 1

7]
o

~
P

v W
A bhN

If you want to do the opposite and combine multiple columns, cast them to a struct:

df.select(
"an,
",
pl.struct(
pl.col("a"),
pl.col("b")
).alias("struct_column"),

)
shape: (3, 3)

I T T 1
| a | b | struct_column |
[T EEEE R |
| 164 | 164 | struct[2] |
i : : :
1 |2 | {1,2} |
|3 |4 | {3,4 I
ERLNL I

One of the common functions that returns a struct is value_counts(). This function
is used to count the occurrences of unique values in a column. Since an expression
can only return one Series, value_counts() returns a Struct column with two fields:
the original column name being counted and count.

First, create a DataFrame with a struct column:

df = pl.DataFrame({
"fruit": ["cherry", "apple", "banana", "banana", "apple", "banana"],

b
print(df)

shape: (6, 1)
| —
fruit
str
[
1

Structs | 193

| cherry |
| apple |
| banana |
| banana |
I apple |

banana |
| E—|

You can count the number of occurrences per unique element in the fruit column
using value_counts():

print(
df
.select(
pl.col("fruit")
.value_counts(sort=True)

)

shape: (3, 1)

 —
fruit
struct[2]

I ——
1

| {"banana",3} |
| {"apple",2} |
| {"cherry",1} |
[|

In the resulting DataFrame, you can see that the value_counts method is called with
the sort parameter set to True. This means that the values are sorted in descending
order by their counts.

You can then unnest these structs to separate columns:

print(
df.select(
pl.col("fruit")
.value_counts(sort=True)

)

.unnest("fruit")
)
shape: (3, 2)
I T 1
| fruit | count |
(S
| str | w32 |
L 1]
I T 1
| banana | 3 |
| apple | 2 I
| cherry | 1 |
L | |

194 | Chapter9: Working with Special Data Types

In the resulting DataFrame, you can see that the value_counts method has been
unnested to separate columns.

Conclusion

This chapter covers the special data types in Polars that have their own namespaces
and how to work with them. You learned about:

o Strings, with a focus on optimizing for variable length using an optimized mem-
ory layout

+ Categoricals’ and Enums’ memory-efficient way of working with repeated string
data

o How the temporal data types Date, DateTime, Time, and Duration address the
challenges of working with time-based information.

o How nested data types like List, Array, and Struct allow you to store collections
of data points in a single column

With these data types, you can work with a wide variety of data using rich set of
methods Polars provides to work with them. In the next chapter, you'll learn how to
summarize and aggregate data.

Conclusion | 195

CHAPTER 10
Summarizing and Aggregating

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 13th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

In most analyses you will want to eventually summarize or aggregate your data to
answer a question or gain insights. Besides the basic aggregations like sum, mean,
min, and max, that offer you insights over the whole dataset, Polars also offers several
functions to analyse subsets of your data. These functions are part of the group_by
context, which allows you to group your data based on one or more columns, or
an expression, and then apply specific calculations or transformations to each group
separately. This is a powerful way to analyze large datasets and gain valuable insights.

This chapter will teach you about the group_by context and its available methods,
and show you how to use them to analyze your data. It will also go into working
with grouping data based on temporal values using group_by_dynamic, rolling,
and over. And additionally we’ll show some optimizations you can use to improve
performance.

197

mailto:sgrey@oreilly.com

Group by Context

Think of a “group by” operation in Polars as similar to asking guests at a big party to
gather into groups based on something they have in common, like their birth month.
Each group (or “group by” category) represents a month, and all guests born in that
month join that group. Once everyone is grouped, you can do things like count how
many guests are in each group, find out who is the tallest in each group, or calculate
the average height of guests in each group. This is similar to how “group by” works
in Polars: it groups data by one or more columns, or an expression, and then allows
you to apply specific calculations or transformations to each group separately. You
can organize your data into these groups using Polars’ group_by function.

After grouping the data, you can use aggregation functions to summarize the data
within each group and gain valuable insights. For instance, you can calculate the aver-
age purchase amount for each customer category by grouping them by customer ID.
Similarly, you can find the total number of sensor readings taken at each location by
grouping them by location. The group_by function is a game-changer for analyzing
large datasets. It allows you to:

+ Organize and categorize data based on specific attributes.
« Apply aggregation functions to extract meaningful insights from each group.

o Gain a deeper understanding of your data by focusing on specific aspects.

Table 10-1 lists the methods you can use out of the box to analyze data.

Table 10-1. The available methods in the Group By context

Method Description

pl.GroupBy.__iter_ () Allows iteration over the groups of the group by operation.
pl.GroupBy.agg(..) Compute aggregations for each group of a group by operation.
pl.GroupBy.all() Aggregate the groups into Series.

pl.GroupBy.apply(..) Apply a custom/user-defined function (UDF) over the groups as a sub-DataFrame.
pl.GroupBy.first() Aggregate the first values in the group.

pl.GroupBy.head(..) Get the first n rows of each group.

pl.GroupBy.last() Aggregate the last values in the group.

pl.GroupBy.len() Return the number of rows in each group.

pl.GroupBy.map_groups(..) Apply a custom/user-defined function (UDF) over the groups as a sub-DataFrame.

pl.GroupBy.max() Reduce the groups to the maximal value.
pl.GroupBy.mean() Reduce the groups to the mean values.
pl.GroupBy.median() Return the median per group.
pl.GroupBy.min() Reduce the groups to the minimal value.

198 | Chapter 10: Summarizing and Aggregating

Method Description

pl.GroupBy.n_unique() Count the unique values per group.
pl.GroupBy.quantile(..) Compute the quantile per group.
pl.GroupBy.sum() Reduce the groups to the sum.
pl.GroupBy.tail(..) Get the last n rows of each group.

To showcase the group_by function, let’s start by loading a dataset of the Top2000 hit
list for 2023 from the Netherlands. This dataset contains information about the top
2000 songs of all times as chosen by the Dutch in 2023, including their position in the
Top2000, the artist, song title, and year of release.

import as

top2000 = pl.read_excel(
"data/top2000-2023.x1lsx",
read_options={"skip_rows": 1},
engine="calamine"

).set_sorted("positie")

set_sorted enabling fast path algorithms

Here we use the set_sorted to tell Polars the "positie" column is
sorted. This is information we know, but Polars doesn’t. By telling
Polars this, it can make use of some fast path optimizations that
are only possible when it knows the data is sorted. A fast path
optimization is a way to make a program run faster by taking
advantage of some special knowledge about the data.

You can show the values the group_by aggregation functions are applied to by
turning the groups into lists, which you can do by running the following code:

(
top2000
.group_by("jaar")
-agg(
(
pl.concat_str(
pl.col("artiest"),
pL.lit(" - "),
pl.col("titel")
)
).alias("songs"),
)
.sort("jaar", descending=True)

)

shape: (67, 2)
I T 1

Group by Context | 199

| jaar | songs |
|] |
| 164 | list[str] |
L 1]
) T 1
2022	["Son Mieux - Multicolor", "Bankzitters - Je Blik ..
2621	["Goldband - Noodgeval", "Bankzitters - Stapelgek"..
2020	["DI-RECT - Soldier On", "Miss Montreal - Door De ..
2019	["Danny Vera - Roller Coaster", "Floor Jansen & He..
2018	["Lady Gaga & Bradley Cooper - Shallow", "White Li..
..	..
1960	["Etta James - At Last", "Shadows - Apache"]
1959	["Jacques Brel - Ne Me Quitte Pas", "Elvis Presley..
1958	["Chuck Berry - Johnny B. Goode", "Ella Fitzgerald..
1957	["Johnny Cash - I Walk The Line", "Elvis Presley -..
1956	["Elvis Presley - Love Me Tender", "Elvis Presley ..
L I |

.agg() allows you to list the aggregations you want to apply to the group data.
We will come back to this after going over the standard group_by aggregations.

You create a list of song titles by concatenating the strings of the artist, a separat-
ing dash, and then the title.

The Descriptives

In the following example you’ll get the top 3 songs per year of release for the 3 most
recent years of release, using the head() method.

(

top2000

.group_by("jaar", maintain_order=True) (1]

.head(3)

.sort("jaar", descending=True)

.head(9) ©
)
shape: (9, 4)
I T T T 1
| jaar | positie | titel | artiest |
S (RSSE [| - |
| 164 | i64 | str | str [
i : : : :
| 2022 | 179 | Multicolor | son Mieux |
| 2022 | 370 | Je Blik Richting Mij | Bankzitters [
2022	395	L'enfer	Stromae
2021	55	Noodgeval	Goldband
2021	149	stapelgek	Bankzitters
2021	210	Dat Heb Jij Gedaan	Meau
2020	19	soldier On	DI-RECT
2020	38	Door De Wind	Miss Montreal

200

Chapter 10: Summarizing and Aggregating

| 2020 | 77
L |

| Impossible (Orchestr.. | Nothing But Thieves |
I I I

© The Top2000 dataset is sorted by position, and since you are using this sort order,
you want to maintain it. By setting the maintain_order parameter to True you
make sure to preserve that order. When set to False, its default value, this order

can be lost because of the parallel processing of groups.

® You want to get the top 3 songs per year of release, so use the head method. This
head(3) method is applied to the group_by context, which means it will return

the first 3 songs per group.

©® You use the head(9) method again, but this time to get the top 3 songs per year

of release for the 3 most recent years of release.

In the same vein, you can get the lowest 3 positions per year of release for the 3 most

recent years of release, using the tail() method.

(

top2000

.group_by("jaar", maintain_order=True)

.tatll(3)

.sort("jaar", descending=True)

.head(9)
)
shape: (9, 4)
I T T T 1
| jaar | positie | titel | artiest |
(RS (MON | - |
| 164 | i64 | str | str |
I l I l]
| 2022 | 1391 | De Diepte | s1e |
| 2022 | 1688 | zeit | Rammstein
2022	1716	THE LONELIEST	Maneskin
2021	1865	Bon Gepakt	Donnie & Rene Froger
2021	1978	Hold On	Armin van Buuren ft...
2021	2000	Drivers License	Olivia Rodrigo
2020	1824	smoorverliefd	Snelle
2020	1879	The Business	Tiesto
2020	1902	Levitating	Dua Lipa ft. DaBaby
1 1 1 1]

Aliases for head and tail

The first() method is the same as the head(1) method, but it’s
more explicit and easier to read. The last() method is also the
same as the tail(1) method.

Now say you want to know the top 10 of artists based on the number of songs in the
Top2000. You can accomplish this by grouping the data by the artist and then getting
the length of the groups using the len() method.

(
top2000
.group_by("artiest")
.len()
.sort("len", descending=True)
.head(10)
)
shape: (10, 2)
T T 1
artiest	len
str	w32
i : i	
Queen	34
The Beatles	31
ABBA	25
The Rolling Stones	22
Bruce Springsteen	22
Michael Jackson	20
Fleetwood Mac	20
coldplay	20
David Bowie	18
u2	18
1 I |

It looks like Dutch people really like Queen, The Beatles, and ABBA!

The next methods are better explained with a different dataset. This dataset contains
sales data which allows us to showcase all kinds of analyses.

df = pl.read_csv("data/sales_data.csv")
df.columns

['Date’',
'Age_Group',
'Country',
'"Product_Category',
'Sub_Category',
'"Product’,
'Order_Quantity',
'Unit_Cost',
'Unit_Price',
'Profit’',

'Cost',
'Revenue']

Let’s kick it off by demonstrating the min and max methods. Say you want to know
the most expensive category and subcategory. You can accomplish this by grouping

202 | Chapter 10: Summarizing and Aggregating

the data by the product category and subcategory and then getting the maximum unit
price using the max() method.

(
df
.select("Product_Category", "Sub_Category", "Unit_Price") (1)
.group_by("Product_Category", "Sub_Category")
.max()
.sort("Unit_Price", descending=True) (3]
.head(10)
)
shape: (10, 3)
T T T 1
Product_Category	Sub_Category	unit_Price
---	--- [---	
str	str	164
i i : :		
Bikes	Road Bikes	3578
Bikes	Mountain Bikes	3400
Clothing	vests	2384
Bikes	Touring Bikes	2384
Accessories	Bike Stands	159
Accessories	Bike Racks	120
Clothing	socks	70
clothing	Shorts	70
Accessories	Hydration Packs	55
clothing	Jerseys	54
L I I I

You select the relevant columns so you can focus on the data you need.

You group the data by the product category and sub category. Unlike the previ-
ous examples, you group by two columns. This means that the max() method will
return the maximum unit price for each combination of product category and
sub category.

© You sort the data by unit price in descending order and get the top 10 most
expensive sub categories.

Now let’s say you want to know the total profit per country. You can accomplish this
by grouping the data by country, then getting the sum of the profit using the sum()
method.

(
df
.select("Country", "Profit")
.group_by("Country")
.sum()
.sort("Profit", descending=True)
)

The Descriptives | 203

shape: (6, 2)

I T 1
Country	Profit
str	i64
L 1]	
) T 1	
United States	11073644
Australia	6776030
United Kingdom	4413853
canada	3717296
Germany	3359995
France	2880282
L 1 |

How about the subcategories with the most unique products? You can accomplish
this by grouping the data by subcategory and then getting the number of unique
products using the n_unique() method.

(
df
.select("Sub_Category", "Product")
.group_by("Sub_Category")
.n_unique()
.sort("Product", descending=True)
.head(10)
)
shape: (10, 2)
T T 1
| sub_category | Product |
| --- [--- |
| str | u32 |
i : i
Road Bikes	38
Mountain Bikes	28
Touring Bikes	22
Tires and Tubes	11
Jerseys	8
vests	4
Gloves	4
socks	3
Bottles and Cages	3
Helmets	3
1 I |

Say you want to know the average order quantity per age group. You can accomplish
this by grouping the data by the age group and then getting the mean of the order
quantity using the mean() method.

(
df
.select("Age_Group", "Order_Quantity")
.group_by("Age_Group")

204 | Chapter 10: Summarizing and Aggregating

.mean()
.sort("Order_Quantity", descending=True)

)
shape: (4, 2)

I I 1
Age_Group	Oorder_Quantity
---	-~
str	fe64
L	
I I 1	
Seniors (64+)	13.530137

Youth (<25)	12.124018
Adults (35-64)	12.045303
Young Adults (25-34)	11.560899
L | |

Additionally you can use the quantile method to get the 25th, 50th, and 75th
percentiles of the order quantity per age group.

(
df
.select("Age_Group", "Revenue")
.group_by("Age_Group")
.quantile(0.9)
.sort("Revenue", descending=True)
)

shape: (4, 2)

Age_Group Revenue

str fe64

Adults (35-64) 2217.0
Youth (<25) 1997.0
Seniors (64+) 943.0

T T]
L 1]	
I 1 1	
Young Adults (25-34)	2227.0
1 1 |

It seems like the Young Urban Professionals are at it again! In the Netherlands
the Young Urban Professionals, known as “Yuppies”, are often associated with high
income and high spending. It seems like the Yuppies are spending a lot on orders,
with the 90th percentile of their order quantity being 2,227!

Another method is the median method, which is an alias to quantile(0.5).

Now that we've seen the basic aggregations available in the group_by context, it’s time
to get weird with it and move on to the advanced stuff.

The Descriptives | 205

The Advanced

All the methods we've discussed so far are great for simple aggregations. However,
sometimes you want to do more complex aggregations, do multiple aggregations at
the same time, or even apply your own custom aggregation functions. This is where

the multi-functional agg comes in.

The agg method allows you to:

« Aggregate column elements into a list per group.

« Control what the resulting column names will be.

o+ Use expressions to apply multiple aggregation functions at the same time, and to

multiple columns.

« Apply your own custom aggregation functions.

Let’s go through these one by one.

First, agg allows you to aggregate column elements into a list per group. This is done
by passing a column selector to the agg method. Lets see how by aggregating the

profit and revenue per country:

(

)
shape: (6, 3)

df

.select("Country", "Profit", "Revenue")

.group_by("Country")

-agg(
pl.col("Profit"),
pl.col("Revenue"),

Country Profit Revenue
str list[164] list[164]
Canada [590, 590, .. 630] [950, 950, .. 1014]

United Kingdom | [1053, 1053, .. 112]

Australia [1366, 1188, .. 655]
United States [524, 407, .. 542]
France [427, 427, .. 655]

T
I
|
1
1
I
Germany | [160, 53, .. 746]
I
I
I
I
1

[295, 98, .. 1250]
[1728, 1728, .. 184]
[24061, 2088, .. 1183]
[929, 722, .. 878]
[787, 787, .. 1207]

Gathering results like this is the first step of the aggregation process and is normally

followed by applying a function to these values.

206

Chapter 10: Summarizing and Aggregating

The second thing you can do with the agg method is name the resulting columns.
This can be done using the alias method on the aggregation expression or the name
namespace. You can refer to Table 5-2 in Chapter 5 for more information on the name
namespace.

(
df
.select("Country", "Profit", "Revenue")
.group_by("Country")
-agg(
pl.col("Profit").alias("All Profits Per Transactions"),
pl.col("Revenue").name.prefix("All "),
)
)

shape: (6, 3)

Country All Profits Per Tran.. | All Revenue

list[164]

str list[164]

I T T 1
I I I |
I I I I
I I I |
i : : :
| United States | [524, 407, .. 542] | [929, 722, .. 878]

| Germany | [160, 53, .. 746] | [295, 98, .. 1250]

I I I |
I I I I
I I I |
I I I I
L 1 1]

Canada [590, 590, .. 630] [950, 950, .. 1014]
United Kingdom | [1053, 1053, .. 112] [1728, 1728, .. 184]
France [427, 427, .. 655] [787, 787, .. 1207]
Australia [1366, 1188, .. 655] [2401, 2088, .. 1183]

Third, agg allows you to apply multiple aggregation functions at the same time,
including multiple columns. You can do this by passing a list of expressions to the agg
method.

| fea f64
l

(
df
.select("Country", "Profit", "Revenue")
.group_by("Country")
-agg(
pl.col("Profit").sum().alias("Total Profit"),
pl.col("Profit").mean().alias("Average Profit per Transaction"),
pl.col("Revenue").sum().alias("Total Revenue"),
pl.col("Revenue").mean().alias("Average Revenue per Transaction"),
)
)
shape: (6, 5)
T T T T T
| country | Total Profit | Average | Total Revenue | Average
| --- | --- | Profit per T.. | --- | Revenue per ..
| str | i64 | --- | i64 | ---
I | | I
L l l 1
I T T T

The Advanced | 207

Germany	3359995	302.756803
canada	3717296	262.187615
United States	11073644	282.447687
United	4413853	324.071439
Kingdom		
Australia	6776030	283.089489
France	2880282	261.891435
L | | |

8978596 | 809.028293 |
7935738 | 559.721964 |
27975547 | 713.552696 |
10646196 | 781.659031 |

I I
21302059 | 889.959016 |
8432872 | 766.764139 |

| |

Alternatively, you can use column selectors in combination with these expressions
to apply an aggregation function to multiple columns at the same time in a single

expression.

(
df
.select("Country", "Profit", "Revenue")
.group_by("Country")
-agg(
pl.all().sum().name.prefix("Total "),
pl.all().mean().name.prefix("Average "),

)
shape: (6, 5)

I T T T T 1
Country	Total Profit	Total Revenue	Average	Average
---	---	---	Profit	Revenue
str	164	164	---	---
			f64	fe4
: : : : : :				
Australia	6776030	21302059	283.089489	889.959016
France	2880282	8432872	261.891435	766.764139
United Kingdom	4413853	10646196	324.071439	781.659031
Germany	3359995	8978596	302.756803	809.028293
canada	3717296	7935738	262.187615	559.721964
United States	11073644	27975547	282.447687	713.552696
L | | | 1 |

Because youre using expressions, it's even possible

to work with conditions. The

condition returns a Boolean mask, and the sum method will sum the true values.
A Boolean mask is an array-like structure of Boolean values used to filter rows or

columns based on specific conditions.

For example, we can find the number of transactions with a large profit grouped by
country by running the example beneath. To show what the Boolean mask looks like
of the expression, you can only aggregate using the expression. This creates a list of
Boolean values. Since this is a list of 0 and 1 values, you can sum them to get the

number of true values!

(
df
.select("Country", "Profit")

208 | Chapter 10: Summarizing and Aggregating

.group_by("Country")
-agg(
(pl.col("Profit") > 1000)
.alias("Profit > 1000"),
(pl.col("Profit") > 1000)
.sum()
.alias("Number of Transactions with Profit > 1000"),

)
shape: (6, 3)

T T T 1
| Country | Profit > 1000 | Number of Transactio..
e | |- |
| str | list[bool] | u32

L 1 1]
I 1 1 1
| canada | [false, false, .. fal.. | 868

| Australia | [true, true, .. false.. | 1233

| United States | [false, false, .. fal.. | 2623

| Germany | [false, false, .. fal.. | 659

| United Kingdom | [true, true, .. false.. | 788

| France | [false, false, .. fal.. | 482

L I I i

Because you can use expressions in the agg function, you can also put in Python
functions that return expressions. While you should normally only combine Polars
and Python when absolutely necessary, this is one of the exceptions. This is because
the Python function runs before Polars does and returns a Polars expression, which

Polars then runs in Rust.

def custom_agg(column: str) -> pl.Expr:

return (column > 1000).alias("Profit > 1000"), (column > 1000).sum().alias("Number of Transact

(
df
.select("Country", "Profit")
.group_by("Country")
-agg(

custom_agg(pl.col("Profit"))

)

)

shape: (6, 3)

T T T 1
| country | Profit > 1000 | Number of Transactio..
- | - |
| str | list[bool] | u32

L 1 1]
I 1 1 1
| Germany | [false, false, .. fal.. | 659

| united Kingdom | [true, true, .. false.. | 788

| France | [false, false, .. fal.. | 482

| United States | [false, false, .. fal.. | 2623

| canada | [false, false, .. fal.. | 868

The Advanced

209

| Australia | [true, true, .. false.. | 1233
L I I i

Allowing plugging in expressions like this shows the versatility of the agg method.
However, what should you do if you want to apply a Python function to your data?

User-Defined Functions

Polars has an extensive set of expressions that allow you to perform a wide range of
operations. However, sometimes you need to perform an operation that isn’t covered
by the available expressions, or is performed by an external package. To leave you
this option, Polars allows for user defined functions (UDFs). The Polars functions that
allow you to do this are:

map_elements
Apply a Python function to each element of a column.

map_batches
Apply a Python function to a Series, or sequence of Series.

map_groups
Apply a Python function to each group in the GroupBy context.

Let’s dive into how you can use these functions to apply your own custom Python
functions to your data.

The map_elements function allows you to apply a Python function to each element in
a column in case you don’t need to know anything about the other elements in the
column.

This example is a sentiment analysis on a DataFrame text with reviews:

from import TextBlob

def analyze_sentiment(review):
return TextBlob(review).sentiment.polarity

df = pl.DataFrame({
"reviews": [
"This product is great!",
"Terrible service.",
"Okay, but not what I expected.",
"Excellent! I love it."

b

df = df.with_columns(
pl.col("reviews"
.map_elements(
analyze_sentiment,

210 | Chapter 10: Summarizing and Aggregating

return_dtype=pl.Float64
)

.alias("sentiment_score")

)
df

shape: (4, 2)

| T |
reviews	sentiment_score
str	fo4
:] :	
This product is great!	1.0

| Terrible service. | -1.0

| Okay, but not what I expected. | 0.2

| Excellent! I love it. | ©.75 |
| | |

In this example, we use the map_elements function to apply the analyze_sentiment
function to each element in the “reviews” column. The resulting values range from
-1.0 (very negative) to 1.0 (very positive) with 0.0 being neutral.

User-Defined Functions | 211

Warning For Inefficient Mappings

When you use a Python function in Polars, it'’s important to know
that it won't be as fast as the native Polars functions. Polars nor-
mally runs its operations in Rust. However when it has to apply a
custom Python function a few things happen:

o The function executes slower Python bytecode instead of
faster Rust bytecode.

o The Python function is constrained by the global interpreter
lock (GIL), which means it can’t run in parallel. This is espe-
cially detrimental to speed in group_by operations, where the
aggregation function is normally called in parallel for each

group.

Mapping Python lambdas or custom functions to Polars data
should be treated as a last resort. When Polars raises a PolarsInef
ficientMapWarning, it’s a sign that there are probably alternative
ways to use a native Polars expression instead. Only if you've gone
through the Polars documentation and found that there’s no native
expression or combination of expressions that does what you want
should you consider using a Python function.

In the following example, you’ll see the PolarsInefficientMap
Warning by mapping a simple function to a column.

df = pl.DataFrame({
"x": [1,2,3,4]
b

def add_one(x):
return x + 1

df.with_columns(
pl.col('x")
.map_elements(
add_one,
return_dtype=pl.Int64,
)
.alias("x + 1")

)

PolarsInefficientMapWarning:
Expr.map_elements is significantly slower than the native expressions API.
Only use if you absolutely CANNOT implement your logic otherwise.
Replace this expression...
- pl.col("x").map_elements(add_one)
with this one instead:
+ pl.col("x") + 1
shape: (4, 2)
1 1
1

X
X
+

64 [

212 | Chapter10:Sumn’m=1ngting
I I I
I | I
I I I
| | |

~
—
N

DN W N
n b wnN

@lru_cache

The @lru_cache decorator from the functools module in Python
is a handy tool for optimizing functions that are computationally
intensive. By caching the results of function calls, it can signif-
icantly reduce execution time, especially when the function is
repeatedly called with the same arguments. This is particularly use-
ful in scenarios where you map a function over a DataFrame col-
umn containing repeated values. @Lru_cache stores the outcomes
of your function calls. When the function is invoked again with the
same parameters, it retrieves the result from the cache instead of
computing it again.

You can give the @lru_cache decorator a maxsize parameter, which
determines the number of results that are cached. By default this is
set to 128 cache entries, but you can set it higher to prevent cache
misses depending on your data size. @Lru_cache discards the least
recently used entries when it fills up. You can set maxsize to None if
you want to store all results at the cost of high memory usage. You
can clear the cache using the cache_clear() method when its no
longer needed. Let’s apply this to the map_elements you did earlier
with the cosine similarity function:

from import lru_cache

df = pl.DataFrame({
"x": [1,1,3,3]
b

(maxsize=None)
def add_one(x):
return x + 1

df.with_columns(
pl.col('x")
.map_elements(
add_one,
return_dtype=pl.Int64,
)
.alias("x + 1")
)
shape: (4, 2)
| E—
| X | X + 1 |
| oo | e
| i64 | 164 |

f—t—

w w R
A bADNON

User-Defined Functions

213

The map_batches function allows you to apply a Python function to a Series or
sequence of Series. This is useful when you need to know something about the other
elements in the column, or when you need to apply a function to multiple columns at
the same time. map_batches has the following arguments:

function
Function to apply to the Series.

return_dtype
The data type of the Series that is returned by the function.

is_elementwise
Whether the function is elementwise or not. If it is, it can run in the streaming
engine, but it might return incorrect group_by results.

agg list
Aggregate the values of the expression into a list before applying the function in
a group-by context. The function will be invoked only once on a list of groups,
rather than once per group.

In the following example we’ll demonstrate the map_batches function by applying
a softmax normalization function to the columns “featurel” and “feature2” The
softmax normalization function turns a list of numbers into probabilities that add up
to 100%.

import as
import as
from import softmax

df = pl.DataFrame({
"feature1": [0.3, 0.2, 0.4, 0.1, 0.2, 0.3, 0.5],
"feature2": [32, 50, 70, 65, 0, 10, 15],
"label": [1, 0, 1, 0, 1, 0, 0]

b

result = df.select(
"label",
cs.starts_with("feature").map_batches(
lambda x: softmax(x.to_numpy()),
)
)

result

shape: (7, 3)

I T T 1
| label | featurel | feature2 |
ISR R |
| 164 | foe4 | fe4 |
L] 1]
I T T 1
| 1 | ©.143782 | 3.1181e-17 |

214 | Chapter 10: Summarizing and Aggregating

o	©.130099	2.0474e-9
1	©.158904	0.993307
o	©.117719	0.006693
1	©.130099	3.9488e-31
o	©.143782	8.6979e-27
o	©.175616	1

L | |

.2909e-24 |
|

Finally, the map_groups function allows you to apply a Python function to each group
in the GroupBy context.

Say you have a DataFrame with temperatures measured in different locations, where
the American locations’ temperatures are in Fahrenheit and the European locations’
in Celsius. If only the variation in temperature is relevant for your analysis, you can
scale the features within each group to make them comparable:

from import StandardScaler

def scale_temperature(group):
scaler = StandardScaler()
scaled_values = scaler.fit_transform(group[['temperature']].to_numpy())
return group.with_columns(pl.Series(values=scaled_values.flatten(), name="scaled_feature"))

df = pl.DataFrame({
"group": ["USA", "USA", "USA", "USA", "NL", "NL", "NL"],
"temperature": [32, 50, 70, 65, 0, 10, 15]

b

result = df.group_by("group").map_groups(scale_temperature)
result

shape: (7, 3)

I T T 1
group	temperature	scaled_feature
str	i64	fea
L 1 1 1		
I T T 1		
usa	32	-1.502872
usa	s0	-0.287066
usa	70	1.063831
usa	65	©.726107
NL	o	-1.336306
NL	10	0.267261

| NL | 15 | 1.069045 |
L | | |

Lastly, if you need fine-grained control over the individual groups in the GroupBy
context, you can also iterate over them. This can be useful when you need to apply
a different custom function per group, or when you want to inspect the groups
individually. Iterating over the groups returns a tuple containing the group identifiers
(or a single identifier if there’s only one) and the DataFrame for that group.

User-Defined Functions | 215

df = pl.DataFrame({
"group": ["USA", "USA", "USA", "USA", "NL", "NL", "NL"],
"temperature": [32, 50, 70, 65, 0, 10, 15]

b

for group in df.group_by(["group"]):
print(group)

('NL',), shape: (3, 2)

(

I 1
group	temperature [
str	164 [
: :	
[T G	
NL	10
NL	15
L L)
(('USA',), shape: (4, 2)	
I T 1	
group	temperature [
---	-
str	164 [
: :	
usa	32 [
usa	s0
usa	70 [
usa	65
L | |

)

In summary, Polars offers functions to apply custom Python functions to your data
through map_elements, map_batches, and map_groups. While these user-defined
functions allow for extensive customization, it’s important to think about perfor-
mance drawbacks compared to native Polars expressions. If you still need to work
with Python functions, but the input is often the same, the @lru_cache decorator can
help optimize repeated computations. By understanding and leveraging these tools,
you can tailor your data transformations to meet specific needs while maintaining
optimal performance.

Row-wise Aggregations with reduce and fold

Polars provides a lot of standard horizontal aggregations out of the box. These
expressions are shown in Table 7-5. Two methods that allow you to build more
complex horizontal aggregations within the Polars API are the reduce and fold
methods. These methods operate on a whole column at the same time, often in a
vectorized manner, keeping it performant.

Here’s how reduce and fold work: First, they create a new column called the accumu-
lator. This accumulator is a new column with initial values to which the aggregation

216 | Chapter 10: Summarizing and Aggregating

is applied. The other input is the value resulting from the expression that is being
aggregated over. This accumulator is updated with the result of a function that gets as
input the accumulator and that value.

Both reduce and fold take these arguments:

function
The function to apply over the accumulator and the value that gets folded.

exprs
The expression to aggregate over.

Additionally, while reduce uses the first value it comes across as the accumulator, the
fold method allows you to set an initial value for the accumulator with the following
parameter:

acc
The initial value of the accumulator.

Let’s look at a simple example to understand how fold works.

df = pl.DataFrame({

"col1": [2],
"col2": [3],
"col3": [4]

b

df .with_columns(
pl.fold(
acc=pl.lit(0), (1]
function=lambda acc, x: acc + x, (2]
exprs=pl.col("*") (3]
).alias("sum"

)
shape: (1, 4)

I T T 1
| coll | col2 | col3 | sum |
S IO It iy
| i64 | 164 | 164 | 164 |
i : : : i
l2 |3 |4 |9 |
L | | | |

© Because you are summing the values of the columns, you set the initial value of
the accumulator to 0. Using the reduce method would have set the accumulator
to the first value in the column.

® This is the simple summing function. The value in the accumulator column is
added to the value in the next column you are aggregating over.

Row-wise Aggregations with reduce and fold | 217

© Since pl.col("*") functions as a wildcard representing any column, you are

aggregating over all columns in the DataFrame without changing them in any
way.

The execution would look like this:

Figure 10-1. How a fold function is executed.

df = pl.DataFrame({

"coll": [2],
"col2": [3],
"col3": [4]

D

df.with_columns(
pl.fold(
acc=pl.lit(0), (1]
function=lambda acc, x: acc + x, @
exprs=pl.col("*") (3]
).alias("sum"

)

shape: (1, 4)
T T T T 1
| coll | col2 | col3 | sum |

218 | Chapter 10: Summarizing and Aggregating

i64 i64 i64 i64

2 3 4

|
)
| 9
L

One possible use case for fold is when you want to sum with weights per column. For
example, you have a DataFrame with sales data for different products, and you want
to calculate the weighted sum of the sales:

df = pl.DataFrame({
"product_A": [10, 20, 30],
"product_B": [20, 30, 40],
"product_C": [30, 40, 50]
b

weights = { o

"product_A": 0.5,
"product_B": 1.5,
"product_C": 2.0

}

weighted_exprs = [(2]
(pl.col(product) * weight).alias(product)
for product, weight in weights.items()

]

df_with_weighted_sum = df.with_columns(
pl.fold(©
acc=pl.lit(0), (4]
function=1lambda acc, x: acc + x, (5]
exprs=weighted_exprs
).alias("weighted_sum")

)

df_with_weighted_sum
shape: (3, 4)

T
product_A | product_B

I T T 1
	product_C	weighted_sum	
164	i64	164	fe4
i : : : i			
10	20	30	95.0
20	30	40	135.0
30	40	se	175.0
L | | | |

© Define weights for each product.

© Create a Polars expression that multiplies each column by its respective weight.

Row-wise Aggregations with reduce and fold | 219

Apply the fold function to calculate the weighted sum.
Start with an initial value of 0 for the accumulator.

Once again use a summing function

© 06 6 ©o

Apply the weighted expressions to the fold function.

over() Expressions in Selection Context

Sometimes, instead of aggregating data into groups, you want to add information
to the frame. This is where over() comes in. The over() function allows you to
perform aggregations on groups in the select context! Additionally, it allows you to
map the results back to the original DataFrame, keeping its original dimensions. This
is practical when you need the context of individual rows, and want to enrich it with
information from the group. The over() function has the following parameters:

expr and *more_exprs
the column(s) to group by. Accepts both expressions and strings, which will be
parsed to column names.

mapping_strategy
o group_to_rows (default): Maps the results back to the row from which they
originate. The result is the same size as the original DataFrame.

o join: Aggregates results to a list that is joined back to the original DataFrame.

o explode: Creates a new row for each element in the result list. This alters the size
of the DataFrame.

Let’s return to the Top2000 dataset from the beginning of this chapter. If you want to
add information to the frame instead of aggregating results for an analysis, you can
use the over () function. For example, let’s try is calculating the position of a song for
its release year.

(top2000

.select(
"jaar",
"artiest",
"titel",
"positie",
pl.col("positie")
.rank()
.over("jaar")
.alias("year_rank")

)

.sample(10, seed=42)

220 | Chapter 10: Summarizing and Aggregating

shape: (10, 5)

T T T T T 1
| jaar | artiest | titel | positie | year_rank |
|] - (SN Rk
| 164 | str | str | 164 | fe4 |
L 1 1 1 1]
) T T T T 1
2013	Stromae	Papaoutati	318	6.0
1969	John Denver	Leaving On A Jet Pla..	607	16.0
1971	Led zeppelin	Immigrant Song	590	19.0
2009	Anouk	For Bitter Or Worse	1453	23.0
2015	Snollebollekes	Links Rechts	1076	14.0
1984	Alphaville	Forever Young	302	11.0
1977	ABBA	Take A Chance On Me	636	23.0 [
1975	Rod Stewart	sailing	918	20.0
1986	Metallica	Master Of Puppets	29	1.0
2005	Alderliefste & Ramse..	Laat Me/Vivre	463	5.0
f i i i i I

>«

Here we can see that Stromae’s “Papaoutai” was ranked 6th best song in 2013 accord-
ing to Top2000 voters, while it’s ranked 318th overall.

Dynamic Grouping with group_by_dynamic

When youre working with temporal data, it can be practical to create groups
based on a time window. This is where the group_by_dynamic function comes in.
group_by_dynamic calculates a time window of a fixed size and width, to which
it assigns the rows in your DataFrame. This is different from a normal group-by,
because rows can occur in multiple time windows, depending on the window size and
the time column. This is useful for calculating yearly or quarterly sales data, where
you want to divide data into specific time periods. These windows can be defined by
the following parameters:

every
the interval at which the windows start.

period
the length of the time window. It matches every if not specified, resulting in
adjacent, non-overlapping groups. However, if you want to create overlapping
windows, you can set period to a value larger than every.

offset
used to shift the start of the window. For example, if you want to start our time
window at 9AM every day to align with business hours, you can set every=1d,
and offset=9h.

Dynamic Grouping with group_by_dynamic | 221

start_by
sets the strategy for determining the start of the first window, allowing you to
align the start with the earliest data point, with a specific day of the week, or by
adjusting to the earliest timestamp and then applying an offset based on your
specified every interval.

The every, period and offset arguments can be specified using the following

strings:

Table 10-2. Duration strings and their meaning

Duration string Description

ns 1 nanosecond
Tus 1 microsecond
ms 1 millisecond

1s 1 second

m 1 minute

1h 1 hour

1d 1 calendar day
w 1 calendar week
Tmo 1 calendar month
1q 1 calendar quarter
Ty 1 calendar year
1i 1index count

These can also be combined. For example: "1y6miw5d" would be 1 year, 6 months, 1
week, and 5 days. With these settings you can create regular time windows and group
your data into them. There are three types of window configurations you can create,
as shown in Figure 10-2.

222 | (Chapter 10: Summarizing and Aggregating

Figure 10-2. The different types of windows.
Additionally, the closed parameter determines whether values that are exactly the
lower or upper bound are included or excluded. The options provided are shown in

Table 10-3.

Table 10-3. Closed interval options

Parameter Description Interval Contains a Contains b
left The lower bound is inclusive, the upper bound is exclusive. [a,b) v X
right Thelower bound is exclusive, the upper bound is inclusive. (a,b] X v
both Both the lower and upper bounds are inclusive. [a,b] v
none Both the lower and upper bounds are exclusive. (b)) X X

Dynamic Grouping with group_by_dynamic | 223

Tell Polars your data is sorted for a boost

If your index column is already sorted in ascending order you
can set check_sorted to False to speed up the grouping process.
Otherwise Polars will check if the index is sorted, which is a costly
operation in the GroupBy context, because it cannot use the sorted
flags that are normally available in the DataFrame.

Rolling Aggregations with rolling

Where group_by_dynamic creates time windows of fixed size and width, rolling
creates windows tailored around values in the DataFrame itself. This is useful when
you want to calculate rolling aggregations, such as moving averages or cumulative
sums. The rolling function has the following parameters:

index_column
the column that contains values that will be used as the anchor point of the
window.

period
the size of the window.

offset
shifts the window backward or forward.

closed
defines how boundary values are handled. Works exactly like explained earlier in
group_by_dynamic.

group_by
groups the data by the specified columns before applying the rolling aggregation.

For a dataset with timestamps, the rolling operation will create a window for each
timestamp that extends backwards by the specified period. If offset is set, it shifts
the entire window forward or backward, offering a way to adjust the focus of the
analysis. This is illustrated in Figure 10-3.

224 | Chapter 10: Summarizing and Aggregating

Figure 10-3. How a time window is determined using the rolling method.

The group_by parameter allows you to perform rolling aggregation within groups of
data.

Imagine you're analyzing a dataset from a chain of retail stores. You have sales data
from multiple locations and want to understand the rolling average sales over a 7-day
period for each store. This will help us identify trends, such as which stores are
consistently performing well and which might be experiencing declines or variability
in sales.

Let’s create a small DataFrame with simple sales numbers. The DataFrame will con-
tain 2 weeks of sales data for 2 stores that are only open on weekdays. You'll calculate
the rolling sum of the last week of sales for each store:

from datetime import date

dates = pl.date_range((1]
start=date(2024, 4, 1),
end=date(2024, 4, 14),
interval="1d"',
eager=True,
)
dates = dates.filter(dates.dt.weekday() < 6) (3]
dates_repeated = pl.concat([dates, dates]).sort() (4]

Rolling Aggregations withrolling | 225

df = pl.DataFrame({
"date": dates_repeated,
"store": ["Store A", "Store B"] * dates.len(),
"sales": [
200, 150, 220, 160, 250, 180, 270, 190, 280, 210,
210, 170, 220, 180, 240, 190, 250, 200, 260, 210,

1
}).set_sorted("date", "store") (5)

Create a date range from April 1st to April 14th.

The eager parameter is set to True to create the date range immediately.

(1]
(2]
© Filter out weekend days.
O Repeat the dates for the two weeks and sort them.
(5]

Indicate that the date and store columns are sorted.

Now that you have a nice dataset, you can calculate the rolling sum of the last 7 days
of sales for each store.

result = (
df.rolling(©
index_column="date",
period="7d",
group_by="store",
check_sorted=False, (2]
).ag9(©
pl.sum("sales").alias("sum_of_last_7_days_sales")
)
)

final_df = df.join(result, on=["date", "store"]) (4]

final_df
shape: (20, 4)

I T T T 1
| date | store | sales | sum_of_last_7_days_s.. |
| - I R s |
| date | str | 164 | 164

L 1 | 1 1
I 1 I 1 1
| 2024-04-01 | Store A | 200 | 200

| 2024-04-02 | Store A | 220 | 420

| 2024-04-03 | Store A | 250 | 670

| 2024-04-04 | Store A | 270 | 940

| 2024-04-05 | Store A | 280 | 1220

| 2024-04-08 | Store A | 2106 | 1230

| 2024-04-09 | Store A | 220 | 1230

| 2024-04-10 | Store A | 240 | 1220

226 | Chapter 10: Summarizing and Aggregating

(3]

o

| 2024-04-11 | Store A | 250 | 1200
| 2024-04-12 | Store A | 260 | 1180
| 2024-04-01 | Store B | 150 | 150
| 2024-04-02 | Store B | 160 | 310
| 2024-04-03 | Store B | 180 | 490
| 2024-04-04 | Store B | 196 | 680
| 2024-04-05 | Store B | 216 | 890
| 2024-04-08 | Store B | 176 | 910
| 2024-04-09 | Store B | 180 | 930
| 2024-04-10 | Store B | 196 | 940
| 2024-04-11 | Store B | 200 | 950
| 2024-04-12 | Store B | 216 | 950
L 1 1 | |

The rolling function creates windows that contain the current row and rows
that are within 7 days before the current row.

The check_sorted parameter is set to False to speed up processing because you
know the data is already sorted.

Calculate the sum of the created time windows with the rolling function.

Join rolling results back to the original DataFrame.

Here you see the rolling sum of the last 7 days is calculated for each store. The first
7 days have a rolling sum of only the days available before it in the dataset, because
there are no more days to include in the window. This rolling aggregation allows you
to see how the sales of each store are developing over time.

Conclusion

In this chapter you learned how to perform aggregations on your data. You learned
about:

o the basic aggregations available in the group_by context, such as sum, mean,

quantile, and median.

the advanced aggregations available in the agg method, which allow you to
aggregate column elements into a list per group, control the resulting column
names, apply multiple aggregation functions at the same time, and apply your
own custom aggregation functions.

User-defined functions (or UDFs), which allow you to apply your own cus-
tom Python functions to your data using map_elements, map_batches, and
map_groups.

o creating groups based on a time window using the group_by_dynamic function.

Conclusion | 227

o creating rolling aggregations around the values in your DataFrame using the
rolling function.

o performing aggregations on groups in the select context using the over()
expression.

» some optimizations you can apply to your Python functions to speed up the
process, like set_sorted and @Lru_cache.

In the next chapter you'll look at how you can combine multiple DataFrames using
joins and unions.

228 | Chapter 10: Summarizing and Aggregating

CHAPTER 11
Joining and Concatenating

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 14th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

Data often comes from multiple sources that you will have to connect and combine
in a meaningful way. There are multiple ways to combine DataFrames, which we'll go
over in this chapter.

Joining
To combine different DataFrames, Polars offers the join() method. It takes the
following arguments:

o other: The DataFrame to join with.

 on: The column(s) to join on when the name is the same in the left and right
frames.

 left_on and right_on: The column(s) to join if they have different names in the
left and right frame.

229

mailto:sgrey@oreilly.com

o how: The join strategy to use.

o suffix: The suffix which will be appended to columns that appear in both
frames.

o validate: Validates that the join is of a certain type.

 join_nulls: Join null values. By default, null values are not joined.

Join Strategies

Joining can be done according to different strategies. Depending on your situation
you need to combine the two datasets in a different way. The strategies that Polars
supports are: inner (default): Only keep rows that have a match in both Data-
Frames. outer: Keep all rows from both DataFrames. left: Keep all rows from the
left DataFrame and only the rows from the right DataFrame that have a match.
cross: Create a Cartesian product of both DataFrames. The Cartesian product comes
from set theory and represents the set of all possible combinations of the elements of
two sets. You’'ll see an example of this later in this section. semi: Keep all rows from
the left DataFrame that have a match in the right DataFrame. anti: Keep all rows
from the left DataFrame that do not have a match in the right DataFrame.

Throughout this section you’ll use the following DataFrames to demonstrate the
different join strategies:

import as

df_left = pl.DataFrame({
"key": ["A", "B", "C", "D"],
"value": [1, 2, 3, 4]

b

df_right = pl.DataFrame({

"key": ["B", "C", "D", "E"],

"value": [5, 6, 7, 8]
H

inner

The default join strategy in Polars is the inner join. This join strategy only keeps
rows that have a match in both DataFrames, discarding any rows that do not.
You'll see in the following example that the row of the left frame with the key A is
not present in the resulting DataFrame, as is the row of the right frame with the
key E. All the other rows are there, as they have a match in both DataFrames.

df_left.join(df_right, on="key", how="inner"

shape: (3, 3)

T T T 1
| key | value | value_right |

230 | Chapter 11:Joining and Concatenating

I I I I
| | 164 | 164 |
L 1 1]
I 1 1 1
8 |2 | 5 |
lc |3 | 6 I
|p |4 | 7 I
L 1 | |
outer

The outer join strategy keeps all rows from both DataFrames, filling the missing
values with nulls. Additionally you can change the default suffixes for columns
with a duplicate name in the right DataFrame. In the following example we'll
change the suffix to _other.

df_left.join(df_right, on="key", how="outer", suffix="_other")

T T T T 1
| key | value | key_other | value_other |
[== |-] --- [--- |
| str | 164 | str | 164

| : : : :
|8 |2 | B | 5 |
lc |3 | c | 6 |
D |4 | D | 7 |
| null | null | E | 8 |
| A | 1 | null | null |
1 I I I |

left
The left join strategy keeps all rows from the left DataFrame and only the rows
from the right DataFrame that have a match, filling the missing values with nulls.
Note that Polars doesn't have a right join. This can be achieved by switching the
DataFrames in the join operation.

df_left.join(df_right, on="key", how="left")
shape: (4, 3)

I T T 1
| key | value | value_right |
[===] ==] --- |
| str | i64 | i64 |
i f l l
| A |1 | null |
|8 |2 | 5 |
lc |3 | 6 |
o |4 | 7 I
L 1 1]

Joining | 231

cross

The cross join strategy creates a Cartesian product of both DataFrames. This
means that the resulting DataFrame will have a length equal to the length of
the left DataFrame multiplied by the length of the right DataFrame, resulting in
potentially huge DataFrames! The on argument is not needed for this join, as all

rows will be joined with each other.

df_left.join(df_right, how="cross")

shape: (16, 4)

I T T T 1
| key | value | key_right | value_right |
[IEEE TR TS | --- |
| str | 164 | str | i64 |
i : i i :
A |1 | B | 5 |
A |1 | c | 6 |
A |1 | D | 7 |
A |1 | E | 8 |
|8 |2 | B | 5 |
[| . | .. |
lc |3 | E | 8 |
D |4 | B | 5 |
o |4 | c | 6 |
D |4 | D | 7 |
o |4 | E | 8 |
L 1 1 1 |

semi

A semi join is a special join that doesn’t add any data from the right DataFrame
to the resulting DataFrame. Instead, it only keeps the rows from the left Data-
Frame that have a match in the right DataFrame. This make the semi join one of
the additional ways to filter the left DataFrame.

df_left.join(df_right, on="key", how="semi")

shape: (3, 2)

1 1
| key | value |

str | 164 |

anti

The anti join strategy is the opposite of the semi join. It only keeps the rows
from the left DataFrame that do not have a match in the right DataFrame.

232

| Chapter 11: Joining and Concatenating

df_left.join(df_right, on="key", how="anti")

shape: (1, 2)

Joining on Multiple Columns

You can join DataFrames on multiple columns by passing a list of column names to
the on argument. This will join the DataFrames on all the columns in the list.

To try this, you'll need two DataFrames with more columns. For this example, you'll
use the following example DataFrames. In these frames you’ll join on the name and
city columns.

df_left = pl.DataFrame({
"name": ["Alice", "Bob", "Charlie", "Dave"],
”City“: [HNYH’ HLAH’ ”NY”, ”SF”],
"age": [25, 30, 35, 40]

b

df_right = pl.DataFrame({
"name": ["Alice", "Bob", "Charlie", "Dave"],
”City“: [HNYH’ HLAH’ ”NY”, Hchicagoﬂ]’
"department": ["Finance", "Marketing", "Engineering", "Operations"]

b

df_left.join(df_right, on=["name", "city"], how="inner"

shape: (3, 4)

T T T T 1
| name | city | age | department |
[ESSN [RSuh y fd |
| str | str | 164 | str |
i : : : i
Alice	NY	25	Finance
Bob	LA	30	Marketing
charlie	NY	35	Engineering
L I I | i

Validation

After joining data you can validate whether the join was of a certain cardinality.
This involves checking the nature of the relationships between the joined tables to
make sure that they joined according to the expected relationships. The following
relationships can be validated:

Joining | 233

Many-to-many (m:m)

A many-to-many join is when multiple rows in the left DataFrame match multi-
ple rows in the right DataFrame. An example of this would be joining a table
of employees to a table of projects. Each employee can be involved in multiple
projects, and projects usually have multiple employees working on them. In
Polars this is the default option, and it doesn’t result in checks.

One-to-many (1:m)

A one-to-many join is when a single row in the left DataFrame matches multiple
rows in the right DataFrame. An example of this relationship would be joining
a list of departments with a list of employees. Each department has multiple
employees, but each employee only belongs to one department. Polars validates
whether the join keys are unique in the left DataFrame.

Many-to-one (m:1)

A many-to-one join is when multiple rows in the left DataFrame match a single
row in the right DataFrame. An example of this would be joining a table of
employees with a table of cities they live in. Each employee can only live in one
city, but a city can contain multiple employees. Polars validates whether the join
keys are unique in the right DataFrame.

One-to-one (1:1)

A one-to-one join is when a single row in the left DataFrame has a match with a
single row in the right DataFrame. An example of this would be joining a table
of employees with a table of employee IDs. Polars validates whether the join keys
are unique in both DataFrames.

To validate the join, you can pass the validate argument to the join method. This
argument takes a string with the relationship you want to validate.

In the example below, you’ll make two DataFrames containing a set of employees and
a set of departments which you will join in a many-to-one fashion. Each employee
only belongs to one department, but each department can have multiple employees:

df_employees = pl.DataFrame({
"employee_1id": [1, 2, 3, 4],
"name": ["Alice", "Bob", "Charlie", "Dave"],
"department_id": [10, 10, 30, 10],

b

df_departments = pl.DataFrame({
"department_id": [10, 20, 30],
"department_name": ["Information Technology", "Finance", "Human Resources"],

b

df_employees. join(
df_departments,
on="department_id",

234

| Chapter 11: Joining and Concatenating

)

how="1left",
validate="m:1"

shape: (4, 4)

T T T T |
| employee_id | name | department_id | department_name |
|- (RS [o |
| 164 | str | 164 | str

L 1 1 | |
I 1 1 I 1
| 1 | Alice | 10 | Information Technolo.. |
| 2 | Bob | 10 | Information Technolo.. |
| 3 | charlie | 30 | Human Resources

| 4 | Dave | 10 | Information Technolo.. |
L I I I I

The moment there are multiple departments sharing the same ID, the validation will

fail:

df_departments = pl.DataFrame({
"department_1id": [10, 20, 10],
"department_name": ["Information Technology", "Finance", "Human Resources"],

b

df_employees. join(

)

df_departments,
on="department_id",
how="1left",
validate="m:1"

ComputeError: the join keys did not fulfil m:1 validation

Inexact Joining

When joining DataFrames, you might want to connect two tables based on values
that are close to each other but not exactly the same. An example of this would be
joining datasets of sales from different sources where one system timestamps it on
writing the sale into a database, while the other system timestamps it on the time of
payment. This creates an inconsistent discrepancy in the timestamps, which can be
solved by joining the DataFrames on the closest value. You can do this with Polars by

using the join_asof function.

join_asof takes the following arguments:

« other: The DataFrame to join with.

o+ on: The column(s) to join on when the name is the same in the left and right
frame.

Inexact Joining | 235

o left_on and right_on: The column(s) to join on when there are different names
in the left and right frame.

o by: Columns to join on before doing the join_asof.

o by_left and by_right: Columns to join on before doing the join_asof in case
they have different names in the left and right frame.

o strategy: The strategy to use when joining.

o suffix: Suffix to use for columns appearing in both DataFrames with the same
name.

e tolerance: The maximum difference between the values to consider them a
match.

o allow_parallel: Allow Polars to calculate the DataFrames up to the join in
parallel. True by default.

o force_parallel: Force parallel frame computation before the join. False by
default.

Before we dive into some examples, you'll need to know that join_asof only works if
both DataFrames are sorted on the column(s) you want to join on. If the DataFrames
are not sorted, you’ll get an error:

df_left = pl.DataFrame({
"{nt_id": [5, 10],
"alue": ["1", "2"]

b

df_right = pl.DataFrame({
"int_id": [4, 7, 12],
"value": [1, 2, 3]

b

df_left.join_asof(df_right, on="int_1id", tolerance=3)

InvalidOperationError: argument in operation 'asof_join' is not explicitly sorte
d

- If your data is ALREADY sorted, set the sorted flag with: '.set_sorted()'.

- If your data is NOT sorted, sort the 'expr/series/column' first.
In this example the DataFrames are already sorted, which we can indicate to Polars
by calling the set_sorted("int_id") method on the DataFrames. set_sorted()
is a free operation, because you provide Polars with the knowledge that the col-
umn is already sorted. In other cases you can sort the DataFrames by calling the
sort("int_id") method. Even when the data is already sorted, this will take some
time to check that it’s sorted and, if it is not, to sort it.

236 | Chapter 11: Joining and Concatenating

df_left = df_left.set_sorted("int_1id")
df_right = df_right.set_sorted("int_id")

df_left.join_asof(df_right, on="int_id")
shape: (2, 3)

I T T 1
| int_id | value | value_right |
RS [P I |
| i64 | str | 164 |
i : : :
| 5 | 1 | 1 I
| 10 | 2 | 2 |
L 1 1 |

Note that this also drops the right join column if they have the same name. If this is
not what you want you can rename the column beforehand and use the on_left and
on_right arguments:

df_right = df_right.rename({"int_id": "int_1id_right"})
df_left.join_asof(
df_right,

left_on="int_1id",
right_on="int_id_right",

shape: (2, 4)

I T T T 1
| int_id | value | int_id_right | value_right |
[ot [- |
| 164 | str | 164 | 164 |
i : i : :
| 5 | 1 | 4 | 1 |
| 10 | 2 | 7 | 2 |
L 1 1 1]

join_asof Strategies

The join_asof function has three strategies to join DataFrames: * backward (default):
Join with the last row that has an equal or smaller value. * forward: Join with the first
row that has an equal or larger value. * nearest: Join with the row that has the closest
value.

The default strategy is the backward strategy. This strategy joins the row on the first
value in the other DataFrame’s join columns that is equal, or smaller than the value in
the left DataFrame, while still falling in the range defined in tolerance.
df_left.join_asof(
df_right,

left_on="int_1id",
right_on="int_id_right",

Inexact Joining | 237

tolerance=3,
strategy="backward"
)

shape: (2, 4)

I T T T 1
| int_id | value | int_id_right | value_right |
[Bt [- |
| 164 | str | 164 | i64 [
i : i : :
| 5 | 1 | 4 | 1 |
| 10 | 2 | 7 | 2 I
L 1 1 1]

The forward strategy looks for the first value in the other DataFrame’s join columns
that is equal or larger than the value in the left DataFrame.

df_left.join_asof(
df_right,
left_on="int_1id",
right_on="int_id_right",
tolerance=3,
strategy="forward"

)
shape: (2, 4)

I T T T 1
int_id	value	int_id_right	value_right
	-	-~	
164	str	i64	i64
i : : : :			
5	1	7	2 I
10	2	12	3 [
L 1 1 | |

Finally, the nearest strategy joins the row on the closest value:

df_left.join_asof(
df_right,
left_on="int_1id",
right_on="int_id_right",
tolerance=3,
strategy="nearest"

)
shape: (2, 4)

I T T T 1
int_id	value	int_id_right	value_right
---	===	---	---
i64	str	164	i64
i : : : :			
5	1	4	1 I
10	2	12	3
L 1 | | |

238 | Chapter 11: Joining and Concatenating

Additional Finetuning with tolerance and by

When you set the tolerance parameter, rows are only joined if the nearest matching
value falls within a certain range. You can set the tolerance for numeric and temporal
data types. For temporal data types, use a datetime.timedelta or the duration
strings (as we previously talked about in Table 10-2), such as "7d12h30m".

If you want to ensure rows are joined only with those in the other DataFrame that
share the same value in the specified column(s), instead of just joining with any
nearest match, you can use the by keyword. If the names of the columns don’t match,
use the combination of by_left and by_right.

Now let’s put these parameters to good use in a use case.

Use Case: Marketing Campaign Attribution

Imagine: you're tasked with finding out the efficacy of your company’s marketing
campaigns. You've gathered two datasets: one containing the Sales data, the other
containing the Marketing campaigns for the past year:

marketing_1f = pl.scan_csv("data/marketing use case/marketing_campaigns.csv")
marketing_1f.fetch(1)

shape: (1, 3)

Campaign Name | Campaign Date Product Type

T T T
| | |
| | |
| str | str | str
i : :
| | |
L | I

Launch 2023-01-01 20:00:00 | Electronics

marketing_1f.select(pl.col("Product Type").unique()).collect()

shape: (4, 1)
1
Product Type

| str [

I —
1

| Books [
| Furniture [
| Electronics |
| |

Clothing
I |

sales_1f = pl.scan_csv("data/marketing use case/sales_data.csv")
sales_1f.fetch(1)

shape: (1, 3)

T T T 1
| sale Date | Product Type | Quantity |

Inexact Joining | 239

| str | str
L 1

164

I
|
T
| 7
|

I 1
| 2023-01-01 02:00:00... | Books
L |

You can see that the timestamps are still a string data type. To work with this data you
need to format it to a matching temporal data type first. Also, since the dates don’t
match exactly, use the join_asof function to join the two DataFrames. Additionally,
match the campaigns with the sales data of the same product category, which you can
do by setting the by parameter accordingly. And last, campaigns don't work forever.
You can assume in this instance that a campaign is in effect for 2 months, so set the
tolerance to 2 months.

sales_1f = sales_L1f.with_columns(
pl.col("Sale Date")
.str.to_datetime("%Y-%m-%d %H:%M:%S%.f")
.cast(pl.Datetime("us")),
)
marketing_1f = marketing_lf.with_columns(
pl.col("Campaign Date").str.to_datetime("%Y-%m-%d %H:%M:%S"),

)

sales_with_campaign_df = (
sales_1f
.sort("Sale Date")
.join_asof(

marketing_1f
.sort("Campaign Date"),
left_on="Sale Date",
right_on="Campaign Date",
by="Product Type",
strategy="backward",
tolerance="60d"

)

.collect()

)

sales_with_campaign_df

shape: (20_000, 5)

I T T T T 1
| sale Date | Product Type | Quantity | Campaign Name | Campaign Date |
| --- | --- |- - | - |
| datetime[ps] | str | 164 | str | datetime[ps]

L l 1 1 1]
I T T T T 1
2023-01-01	Electronics	2	null	null
01:26:12...				
2023-01-01	Books	7	null	null
02:00:00				
2023-01-61	Toys	9	null	null

| 06:14:30... | | I | |
| 2023-01-01 | Clothing | o | null | null |

240 | Chapter 11:Joining and Concatenating

06:52:25...

I I I I I I
2023-01-01	Books	7	null	null
07:44:50...				
. [..	
2023-12-31	Clothing	10	null	null
15:45:29..				
2023-12-31	Toys	4	null	null
18:15:09...				
2023-12-31	Electronics	7	null	null
18:33:47..				
2023-12-31	Books	6	null	null
18:37:54...				
2023-12-31	Furniture	4	null	null
19:41:22...				
L | 1 1 1 |

Now, if you want to find out whether the campaigns led to a higher average sales
quantity, you can group the data by Product Type and Campaign Name. This lets
you compare the products sold with versus without the campaign and calculate the
average quantity, like discussed in Chapter 10.

(
sales_with_campaign_df
.group_by("Product Type", "Campaign Name")
.agg(pl.col("Quantity").mean())
.sort("Product Type", "Campaign Name")

)

shape: (9, 3)

T T T 1
Product Type	Campaign Name	Quantity
str	str	fe4
i : : :		
Books	null	5.527716
Clothing	null	5.433385
Clothing	New Arrivals	8.200581
Electronics	null	5.486832
Electronics	Launch	8.080775
Electronics	Seasonal Sale	8.471406
Furniture	null	5.430222
Furniture	Discount	8.191888
Toys	null	5.50318
1 I I I

From this result we can see that campaigns generally lead to a higher sales quantity,
with the exception of the Books and Toys categories. The Toys category never ran a
campaign, which explains it, but what about the Books category?

marketing_1f.filter(pl.col("Product Type") == "Books").collect()

shape: (1, 3)
T T T 1

Inexact Joining | 241

Campaxgn Name Campalgn Date

%]

Clearance 2023-12-31 21:00:00

| | |
| | |
tr | datetlme[us] | str |
: : :
| | |
I I I

It seems that the Books category only ran one campaign: a New Year’s Eve clearance
sale. Let’s see if there are any sales after that moment:

(
sales_1f

.filter(
(pl.col("Product Type") == "Books") &

(
pl.col("Sale Date") >
pl.11t("2023-12-31 21:00:00").str.to_datetime()

)

.collect()

shape: (0, 3)

Sale Date

Product Type | Quantity

datetime[ps] | str 164

It seems that after the clearance started, no more books were sold. Since our
join_asof strategy was backward, this campaign wasn't joined to any of the values,
which explains why it’s missing in the results! This means that the sales it might've
caused are not in the dataset, making it look ineffective!

Vertical and Horizontal Concatenation

The join function combines DataFrames based on the values in a DataFrame, but
sometimes you just want to add DataFrames together without regard to their the
values. Usually DataFrames are stored in different locations in memory. When you
want to combine them, you can do three things:

o Combine the data in a new DataFrame by copying it to a new location.
« Point the new DataFrame to the locations where the data is stored.

o Copy the second DataFrame’s data behind the data of the first DataFrame.

The first way is to copy data to a new location. This is the default behavior of p1.con
cat(..). This function takes a list of DataFrames, LazyFrames, or Series and can
concatenate them vertically, horizontally or diagonally. After combining the frames it

242 | Chapter 11: Joining and Concatenating

rechunks the resulting DataFrame, copying the data to a new location into a single
chunk. This guarantees optimal querying performance afterwards.

As explained in Chapter 2, rechunking copies data to a new location in memory to
make it contiguous again. This improves the performance of queries, and is especially
helpful when the resulting DataFrame is queried multiple times.

concat has the following keywords:

items: The list of DataFrames, LazyFrames, or Series to concatenate.
how: The strategy to combine these items.
rechunk: Whether to rechunk the resulting DataFrame. True by default.

parallel: Determines if LazyFrames should be computed in parallel. True by
default.

You can choose the following concatenation strategies:

vertical (default): Concatenate the items vertically. This applies multiple vstack
operations. It will fail if the DataFrames don’t having matching columns, includ-
ing data type.

vertical_relaxed: Concatenate the items vertically, and additionally coerces

columns to a supertype if their types don’t match. This will fail if the DataFrames
don’t have matching column names, and disregards their data types.

horizontal: Concatenate the items horizontally. Fills with null if the lengths
don’t match.

diagonal: Combines the items by creating a union of their columns. Fills missing
values with null.

diagonal_relaxed: Same as diagonal, and additionally coerces columns to a
supertype if their types don’t match.

align: Combines frames horizontally in a smart way. It aligns the rows based on
the values in the columns that are available in both DataFrames. Missing values
are padded with null.

The first strategy is ‘vertical' concatenation. This is the default strategy of concat. It
combines the DataFrames vertically, meaning that the rows of the DataFrames are
stacked on top of each other. How it works is shown in Figure 11-1.

Vertical and Horizontal Concatenation | 243

id value id value id value
la 4d la
2b + 5@ = 2b
3c 3c

4d
5e

Figure 11-1. Vertical concatenation.

df1 = pl.DataFrame({
"id": [1, 2, 3],
"value": ["a", "b", "c"],

b

df2 = pl.DataFrame({
"id": [4, 5],
"value": ["d", "e"],

b

pl.concat([df1,df2], how="vertical")
shape: (5, 2)

 — e—
| id | value |
[
| i64 | str |
—
1	a
2	b
3	c
4	d
5	e
1 1

The second strategy is ‘horizontal® concatenation. This strategy combines the Data-
Frames horizontally, meaning that the columns of the DataFrames are stacked next
to each other. When the lengths of the DataFrames don’t match, the resulting Data-
Frame will be filled with null values. Columns cannot have the same name, and if
they do, the operation will fail. You can circumvent this by renaming the columns
before concatenating. How it works is shown in Figure 11-2.

244 | Chapter 11: Joining and Concatenating

id value value2 id value value2
1la X 1la X
2b + y = 2b y
3c 3c null

Figure 11-2. Horizontal concatenation.

df1 = pl.DataFrame({
"id": [1, 2, 31,
"value": ["a", "b", "c"],
b
df2 = pl.DataFrame({
”Valuez”: ["X”, HyH]’
b
pl.concat([df1,df2], how="horizontal")

shape: (3, 3)

T T T 1
| id | value | value2 |
[N e By
| i64 | str | str |
i : :]
1	a	x
2	b	y
3	¢	null
L I I i

The third strategy is ‘diagonal’ concatenation. This strategy combines the Data-
Frames by creating a union of their columns. Any column values that are missing in
the DataFrames will be filled with null values. How it works is shown in Figure 11-3.

id value value value2 id value value2
1a d X 1a null
2b + e y = 2b null
3¢ 3c null

null d X
null e y

Figure 11-3. Diagonal concatenation.

df1 = pl.DataFrame({

"id": [1, 2, 3],

Hvalueﬂ: [HaH’ Hbﬂ, ”C“],
b
df2 = pl.DataFrame({

"value": ["d", "e"],

Vertical and Horizontal Concatenation | 245

"value2": ["x", "y"],

b

pl.concat([df1,df2], how="diagonal")
shape: (5, 3)

T T T 1
| id | value | value2 |
SN D B
| i64 | str | str |
| : : :
1	a	null
2	b	null
3	c	null
null	d	x
null	e Y	
L 1 L |

The fourth and last strategy is ‘align' concatenation. This strategy doesn’'t simply
tape rows or columns together. Instead it finds matching values in columns that are
available in both DataFrames, and aligns the rows based on these values, like shown
in Figure 11-4.

id value value value2 id value value2
1la a X 1la X
2b + c y = 2b null
3c d z 3c %
null d z

Figure 11-4. Aligned concatenation.

df1 = pl.DataFrame({
"id": [1, 2, 3],
"value": ["a", "b", "c"],
b
df2 = pl.DataFrame({
"value": ["a", "c", "d"],
"value2": ["x", "y", "z"],
b
pl.concat([df1,df2], how="align")

T
value | value2

T T 1
| d | I
[o ey
| 164 | str | str |
i l l l
|1 | a | x |
| 2 | b | null |
3 |c |y |

246 | Chapter 11: Joining and Concatenating

In addition, the vertical, horizontal, and diagonal strategies each have a relaxed
version. This means that if the types of columns with the same names in both frames
don’t match, the columns will be coerced to become a supertype. For example, a
column with integers and floats will be coerced to a float column, and a column with
integers and strings will be coerced to a string column. This is useful when you want
to concatenate DataFrames that have the same columns but different data types.

The example below shows what happens when you try to concatenate two Data-
Frames with the same columns but different data types:

df1 = pl.DataFrame({
"id": [1, 2, 3],
"value": ["a", "b", "c"],
b
df2 = pl.DataFrame({
"id": [4.0, 5.0],
"value": [1, 2],
b
pl.concat([df1,df2], how="vertical")

SchemaError: type Float64 is incompatible with expected type Int64
When you use the vertical_relaxed strategy, the concatenation will succeed:

pl.concat([df1,df2], how="vertical_relaxed")

shape: (5, 2)

. E—
| id | value |
| oo -
| fe64 | str |

.

unh wNn R
[clcl oo o]
N =R, N O o

IS I

Vertical and Horizontal Concatenation | 247

align_frames

The align strategy is based on the align_frames function. This
function lets you pick a column and aligns the rows of a set of
DataFrames according to the values in that column. If a value is
missing in one of the DataFrames, the resulting DataFrame will
have a null value in that row. If values appear multiple times the
Cartesian product of the rows will be created. The function returns
the same DataFrames, but with their rows aligned to each other.

The keywords of align_frames are:

o *frames: The frames you want to align to each other.
« *on: The column(s) to align the frames on.

» how: The join strategy used to determine the resulting values.
The default is outer.

o select: Columns and their order to select from the resulting
DataFrames.

o descending: Whether to sort the resulting DataFrame in
descending order. This can also be a list of Booleans with a
matching length of the columns provided in on.

df1 = pl.DataFrame({
"id": [1, 2, 2],
"value": ["a", "c¢", "b"],

b

df2 = pl.DataFrame({
"id": [2, 2],
"value": ["x", "y"I,

b

pl.align_frames(df1,df2, on="1d")
[shape: (5, 2)

I E—
| id | value |
| -] -
| i64 | str |
TR S
|1 |a I
|2 |c I
l2 |c I
|2 |b I
l2 |b I
L1
shape: (5, 2)
I E—
| id | value |
| -] - |
| i64 | str |
TR S
| 1 | null |
[2 | x |
248 | Chapter11:JoiningIar?d(onlkaténatingI
2 X
l2 |y I

I_I—I]

Note that in the second frame. which is missine the 1D “1” the

The vstack and hstack functions use the second way of combining DataFrames. (A
comparable function exists for Series, called append.) They combine two DataFrames
without moving the data in memory. Instead they create a new DataFrame or Series
containing multiple chunks that can be located in different parts of memory. This
makes stack operations quick, with the drawback that querying could be slower
because data has to be read from multiple locations in memory. The concat vertical
strategy uses the vstack operation, but this can also be called by itself. concat
allows you to rechunk the resulting DataFrame to prevent this performance hit, while
vstack does not.

These are the preferred methods when you append multiple DataFrames one after the
other. Note that stack operations only work on DataFrames, not LazyFrames, since
they need to combine existing chunks.

vstack requires the width, column names, and their dtypes to match.

df1 = pl.DataFrame({
"id": [1, 2],
”Value”: [HaH’ Hbﬂ]’

H

df2 = pl.DataFrame({
"id": [3, 4],
”Value”: [”C“, Hdﬂ]’

H

df1.vstack(df2)
shape: (4, 2)

. —
| id | value |
[
| 164 | str |
—
1	a
2	b
3	c
4	d
I E—	

Exactly like vstack, hstack combines DataFrames horizontally. This operation
requires the height of the DataFrames to match.

df1 = pl.DataFrame({
"id": [1, 2],
"value": ["a", "b"],

b

df2 = pl.DataFrame({
Hvaluezﬂ: [”X”, HyH]’

b

df1.hstack(df2)

Vertical and Horizontal Concatenation | 249

shape: (2, 3)

T T T 1
| id | value | value2 |
[=== | -] ---]
| 164 | str | str |
: : : :
|1 | a | x |
|2 |b |y |
f i I i

For Series, you can use append. This keeps the name of the first Series.

s1 = pl.Series("a", [1, 2])
s2 = pl.Series("b", [3, 4])
s1.append(s2)

shape: (4,)
Series: 'a' [164]
[

1

2

3

4
1

The third way to combine DataFrames is extend. When there’s enough space avail-
able in memory behind the original DataFrame, extend copies the data of the second
DataFrame behind the first one. This eliminates the need to copy the data to a new
location, which can be faster, and still keeps the data contiguous in memory. This
works best when you want to add a smaller DataFrame to a larger one. Note that
extend modifies the DataFrame in place! It does return the resulting DataFrame as
well, but just as a convenience.

df1 = pl.DataFrame({
"id": [1, 2],
"alue": ["a", "b"],

b

df2 = pl.DataFrame({
"id": [3, 4],
"value": ["¢", "d"],

b

df1.extend(df2)

shape: (4, 2)
. E—
| id | value |

| 164 | str |
S S
|1 | a |
|2 |b |
3 |c |

250 | Chapter 11:Joining and Concatenating

|4 |d |
(I S

Conclusion

In this chapter you learned how to combine DataFrames.

e You can use join to combine DataFrames based on the values in the DataFrames
and the strategies outlined here. You can to finetune the join with the tolerance
and by parameters.

 join_asof is a special join that joins DataFrames based on the nearest value in
the other DataFrame.

o concat combines DataFrames without regarding the values, which has multiple
strategies to combine the DataFrames, and you can optimize performance of the
resulting DataFrame with the rechunk parameter.

o vstack and hstack stack DataFrames vertically and horizontally, respectively,
and append appends Series to each other by creating a new DataFrame with
multiple chunks, which is quick, but less performant when querying.

» extend adds a DataFrame to another DataFrame by copying the data behind the
original DataFrame, which is faster than copying the data to a new location.

In the next chapter we'll look into reshaping DataFrames, which is useful when you
want to change the structure of your data.

Conclusion | 251

CHAPTER 12

Reshaping

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 15th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

In the last chapter we focussed on aggregating data to create informative summaries.
However, what should you do if the data is not in the right shape to perform these
aggregations? In this chapter we will learn how to reshape data to make it more
suitable for analysis.

Reshaping data is a crucial step in the data analysis process. It involves changing the
dimensions of the data to make it more suitable for analysis, improve computational
performance, or prepare it for visualization. Polars offers a variety of functions to
reshape the data exactly like you need it, using functions like pivot, melt, transpose,
explode, and partition_by.

Wide Versus Long DataFrames

There once was a wise man called Hadley Wickham. He is a statistician known for,
among other things, his work on the R programming language and the “tidyverse’,

253

mailto:sgrey@oreilly.com

which is a popular suite of packages to process and visualize data in R. Related to
that, in 2014 he wrote a paper titled “Tidy Data” in which he introduced the concept
of wide and long DataFrames. These concepts are to this day widely used in the data
science community to describe the shape of DataFrames, and we will use it in this
chapter as well.

Wickham stated that DataFrames can be represented in two extreme forms: wide and
long. Wide DataFrames have many columns and few rows. The idea is that every
row contains a column with an identifier, and the data is spread over many columns.
This format is often used when there are multiple measurements per observation. An
example of wide data would be the following:

import as

df = pl.DataFrame({
"student": ["Alice", "Bob", "Charlie"],
"math": [85, 78, 92],
"science": [90, 82, 85],
"history": [88, 80, 87]
b
df

shape: (3, 4)

I T T T 1
| student | math | science | history |
IR N (R I
| str | 164 | 164 | 164 |
: : : : :
Alice	85	90	88
Bob	78	82	8o
Charlie	92	85	87
L | | 1 |

This DataFrame has three columns with the subjects as the column names.

Where wide DataFrames have many columns, long DataFrames have few columns
and many rows. Instead of having multiple values and variables per row, long Data-
Frames have multiple rows with each one variable and corresponding value. The last
example in long format would look like the following:

df = pl.DataFrame({
"student": ["Alice", "Alice", "Alice", "Bob", "Bob", "Bob", "Charlie",
"Charlie", "Charlie"],
"subject": ["Math", "Science", "History", "Math", "Science", "History",
"Math", "Science", "History"],
"grade": [85, 90, 88, 78, 82, 80, 92, 85, 87]
b
df

shape: (9, 3)

T T T 1
| student | subject | grade |

254 | Chapter 12: Reshaping

| - | | - |
| str | str | 164 |
| : : :
Alice	Math	8
Alice	Science	90
Alice	History	88
Bob	Math	78
Bob	Science	82
Bob	History	80
Charlie	Math	92
charlie	Science	85
charlie	History	87
L I I I

This formats the DataFrame so that every row contains only one observation.

The implications of the used format on memory usage and computational perfor-
mance are significant. Since Polars uses a columnar storage format, long DataFrames
tend to be more efficient in terms of memory usage and computational performance.

Pivot to Wider DataFrame

If you want to go from a long format to a wide DataFrame, you can use the pivot
function. The pivot function takes the following arguments:

index
Columns to use as identifiers for the rows.

columns
Columns containing what will be the column names.

values
Columns containing the values that will end up in the cells.

aggregate_function
The function used to aggregate the values if there are multiple values for a single
cell. If left empty, the function will throw an error if there are multiple values for
a single cell.

maintain_order
Sort the grouped keys to make the outcome predictable.

sort_columns
Sort the transposed values of columns, also the transposed columns, by name.
The default is to sort by the order of appearance in the DataFrame.

separator
The string used as separator in generated column names.

Pivot to Wider Dataframe | 255

Let’s break it down with an example. You've got to store the grades of a group of
students. As the grades come in one by one, you store them in a long DataFrame:

import as

df = pl.DataFrame({
"student": ["Alice", "Alice", "Alice", "Bob", "Bob", "Bob", "Charlie",
"Charlie", "Charlie"],
"subject": ["Math", "Science", "History", "Math", "Science", "History",
"Math", "Science", "History"],
"grade": [85, 90, 88, 78, 82, 80, 92, 85, 87]
b

df

shape: (9, 3)

T T T 1
student	subject	grade
---	--- [---	
str	str	164
: : : :		
Alice	Math	85
Alice	Science	90
Alice	History	88
Bob	Math	78
Bob	Science	82
Bob	History	80
Charlie	Math	92
charlie	Science	85
charlie	History	87
L I I I

Neat. Now at the time of the student’s report cards being handed out, you want to
create one row per student. You can do this by pivoting on the subject column:

df.pivot(index="student", columns="subject", values="grade")

shape: (3, 4)

I T T T 1
| student | Math | Science | History |
IR S (R R
| str | 164 | 164 | 164 |
i : i : i
Alice	85	90	88
Bob	78	82	8o
Charlie	92	85	87
L | 1 1 |

You can see how you went to a wide DataFrame with the student names as the index
and the subjects as the columns!

In reality, students don’t just get one grade, but multiple grades. This means you'll
have to aggregate the grades! Luckily, the pivot function can handle this for us.

256 | Chapter 12: Reshaping

By default, the pivot function will not aggregate and throw an error if there are
multiple values. In our example this didn’t happen, because all the values are unique.
You can change this by passing the aggregate_function argument with the desired
aggregation function. You can select from the following aggregation functions: min,
max, first, last, sum, mean, median, and len. In our example to calculate the average
grade, you can use the mean aggregation function. First let’s update the DataFrame to
have multiple grades per student:

df = pl.DataFrame({
"student": ["Alice", "Alice", "Alice", "Alice", "Alice", "Alice",
"Bob", "Bob", "Bob", "Bob", "Bob", "Bob"],
"subject": ["Math", "Math", "Math", "Science", "Science", "Science",
"Math", "Math", "Math", "Science", "Science", "Science"],
"grade": [85, 88, 85, 60, 66, 63,
51, 79, 62, 82, 85, 82]
H

df
shape: (12, 3)

I T T 1
student	subject	grade
---	--- [---	
str	str	164
i : : :		
Alice	Math	85
Alice	Math	88
Alice	Mmath	85
Alice	Science	60
Alice	Science	66
.
Bob	Math	79
Bob	math	62
Bob	Science	82
Bob	Science	85
Bob	Science	82
L 1 1 |

Now you can pivot the DataFrame to calculate the average grade per student:

df.pivot(
index="student",
columns="subject",
values="grade",
aggregate_function="mean"

)

shape: (2, 3)

I T I 1
| student | Math | Science |
[ESSE RCE B

| str | fea | fea |

Pivot to Wider Dataframe | 257

L 1
I 1
| Alice | 8
| Bob |
L I

1]

1 1
.0 | 63.0 |
0 | 83.0 |
| |

In addition to this list of standard aggregation functions, you can also pass a custom
aggregation function through an expression. By creating an expression that can be
run against a lists elements, like pl.col(..).list.eval(<your_expression>), you
can make use of extended flexibility. For example, you can calculate the difference
between the maximum and minimum grade to show the stability of the students’
grades:

df.pivot(
index="student",
columns="subject",
values="grade",
aggregate_function=pl.element().max() - pl.element().min()

)

shape: (2, 3)

T T T 1
| student | Math | Science |
(SN R
| str | i64 | i64 |
i : i i
| Alice | 3 | 6 |
| Bob | 28 |3 I
1 I I |

Here you can see Bob has a much larger difference between his maximum and
minimum grade than Alice in Math. In our use case, you could use this to approach
Bob’s mentor to make sure he’s okay, because he seems to have slipped up on one of
his tests!

Now that’s a whole lot easier than getting a couch up the stairs!

Melt to Longer DataFrame

If instead you want to go from a wide format to a long DataFrame, or unpivot,
you can use the melt function. The melt function takes the following arguments:
id_vars: Columns to use as identifiers for the rows. These will remain columns in
the resulting frame. value_vars:: Columns to melt. If not specified, uses all columns
not set in id_vars. variable_name:: Name of the resulting column that will contain
the names of the column that were melted. value_name:: Name of the resulting
column that contains the values of the columns that were melted.

Let’s illustrate this with an example. Let’s take the report card set-up of the data from
the previous section. Every student has a row with their grades for Math, Science, and
History.

258 | Chapter 12: Reshaping

df = pl.DataFrame({

b
df

"student": ["Alice", "Bob", "Charlie"],
"math": [85, 78, 92],

"science": [90, 82, 85],
"history": [88, 80, 87]

shape: (3, 4)

I T T T 1
| student | math | science | history |
IR S (R I
| str | 164 | 164 | 164 |
| : : : :
Alice	85	90	88
Bob	78	82	8o
Charlie	92	85	87
L 1 1 1 |

You can melt this DataFrame to

get a long DataFrame with one row per student per

value_vars=["math", "science", "history"],

subject:
df.melt(
id_vars=["student"],
variable_name="subject",
value_name="grade"
)
shape: (9, 3)
T T T 1
student	subject	grade
--	--- [---	
str	str	164
i : : :		
Alice	math	85
Bob	math	78
Charlie	math	92
Alice	science	90
Bob	science	82
charlie	science	85
Alice	history	88
Bob	history	80
charlie	history	87
1 I I I

Here the way we identify the rows in the resulting frame is by the student column,
containing the name of the student. All the columns that contain what will be
the values in the returning frame are the columns with subjects (Math, Science,
and History). The way we'll call the columns that contain these subjects is by the
variable_name column well call subject, and the value_name will be stored in the
grade column.

Melt to Longer DataFrame | 259

df = pl.DataFrame({
"student": ["Alice", "Bob", "Charlie", "Alice", "Bob", "Charlie"],
"class": ["Math101", "Math101", "Math101", "Math102", "Math102", "Math102"],
"age": [20, 21, 22, 20, 21, 22],
"semester": ["Fall", "Fall", "Fall", "Spring", "Spring", "Spring"],
"math": [85, 78, 92, 88, 79, 95],
"science": [90, 82, 85, 92, 81, 87],
"history": [88, 80, 87, 85, 82, 89]
b
df

shape: (6, 7)

I T T T T T T 1
| student | class | age | semester | math | science | history |
I B R T R e e
| str | str | 164 | str | 164 | i64 | i64 |
L 1 1 l 1 1 1]
I T T T T T T 1
Alice	Mathie1	20	Fall	85	90	88
Bob	Math1e1	21	Fall	78	82	80
charlie	Math1e1	22	Fall	92	85	87
Alice	Math102	20	Spring	88	92	85
Bob	Math1e2	21	Spring	79	81	82
charlie	Math102	22	Spring	95	87	89
L 1 1 1 1 1 1]
df.melt(

id_vars=["student", "class", "age", "semester"],
value_vars=["math", "science", "history"],
variable_name="subject",

value_name="grade"

)

shape: (18, 6)

T T T T T T 1
| student | class | age | semester | subject | grade |
(RSN IS el Bt e (e
| str | str | 164 | str | str | 164

L 1 1 | 1 1]
I 1 1 T 1 1 1
Alice	Math101	20	Fall	math	85
Bob	math1e1	21	Fall	math	78
charlie	Math101	22	Fall	math	92
Alice	Math102	20	Spring	math	88
Bob	Math102	21	Spring	math	79
charlie	Math102	22	Spring	math	95
Alice	Math101	20	Fall	science	90
Bob	mathie1	21	Fall	science	82
charlie	Math101	22	Fall	science	85
Alice	Math102	20	Spring	science	92
Bob	Math102	21	Spring	science	81
charlie	Math102	22	Spring	science	87
Alice	Math101	20	Fall	history	88
Bob	mathie1	21	Fall	history	80
charlie	Math101	22	Fall	history	87
Alice	Math102	20	Spring	history	85

260 | Chapter 12: Reshaping

| Bob | math1e2 | 21 | Spring | history | 82 |
| charlie | Math102 | 22 | Spring | history | 89 |
L I I L I I |

Transposing

If you want to flip all the columns into rows diagonally, without keeping some
columns as identifiers, you can use the transpose function. The transpose function
only works on DataFrames, and takes the following arguments: include_header::
Whether to set the column names to the first column in the resulting DataFrame.
header_name:: If include_header is set to True, this will be the name of the column
containing the original column names. It defaults to column. column_names:: You can
pass a list of column names (or another iterable) that will be used as the column
names in the resulting DataFrame.

Time for an example. Let’s take the DataFrame from the previous section:

df = pl.DataFrame({
"student": ["Alice", "Bob", "Charlie"],
"math": [85, 78, 92],
"science": [90, 82, 85],
"history": [88, 80, 87]
b
df

shape: (3, 4)

I T T T 1
| student | math | science | history |
IR S (R I
| str | 164 | i64 | 164 |
i i i i i
Alice	85	90	88
Bob	78	82	8@
Charlie	92	85	87
L 1 1 1]

Now let’s flip this frame diagonally:

df.transpose(
include_header=True,
header_name="original_headers",
column_names=(f"report_{count}" for count in range(l, len(df.columns) + 1))

)
shape: (4, 4)

T T T T 1
| original_headers | report_1 | report_2 | report_3 |
| - S By B
| str | str | str | str |
i i i i l
| student | Alice | Bob | charlie |
| math | 85 | 78 | 92 |

Transposing | 261

| science | 90 | 82 | 85 |
| history | 88 | 8@ | 87 |
L

All the columns are now rows, and the original column names are stored in the
original_headers column!

Generators in Python

Generators are a special type of function that will return an iterable
sequence of items. They can be defined in multiple ways, from
functions with the yield keyword to generator expressions. In the
example above, we used a generator expression to create a sequence
of strings. This is done by using a for loop inside parentheses,
which results in an list of column names that can be used by Polars’
transpose.

Exploding

When you have a List or Array in your columns, it isn’t quite the wide format
we talked about earlier, but it’s also not a long format. In case you want to unpack
these nested values into a long format, you can use the explode function. Instead
of blowing stuff up, this function safely creates a row for every value in the nested
column copying the values from the other columns. The only arguments explode
takes are the columns it is supposed to unpack to separate rows. Sticking to the
student example, let’s list the scores for one subject.

df = pl.DataFrame({

"student": ["Alice", "Bob", "Charlie"],

"math": [[85, 90, 88], [78, 82, 80], [92, 85, 87]]
b
df

shape: (3, 2)

I T 1
| student | math |
| -] |
| str | list[i64] |
L 1]
I T 1
Alice	[85, 90, 88]
Bob	[78, 82, 80]
charlie	[92, 85, 87]
L 1]

In order to turn this frame into a long format we can apply explode to the math
column:

df.explode("math")

262 | Chapter 12: Reshaping

shape: (9, 2)

T T 1
student	math
str	164
i : :	
Alice	85
Alice	90
Alice	88
Bob	78
Bob	82
Bob	80
charlie	92
Charlie	85
charlie	87
L I i

And in the case of multiple columns:

df = pl.DataFrame({
"student": ["Alice", "Bob", "Charlie"],
"math": [[85, 90, 88], [78, 82, 80], [92, 85, 87]1],
"science": [[85, 90, 88], [78, 82], [92, 85, 87]],
"history": [[85, 90, 88], [78, 82], [92, 85, 87]],
b
df

shape: (3, 4)

I T T T 1
student	math	science	history
str	list[i64]	list[i64]	1ist[i64]
L 1 1 l 1			
I T T T 1			
Alice	[85, 90, 88]	[85, 90, 88]	[85, 96, 88]
Bob	[78, 82, 80]	[78, 82]	[78, 82]

| charlie | [92, 85, 87] | [92, 85, 87] | [92, 85, 87] |
L | | | |

In order to turn this frame into a long format we can apply explode to the math
column:

df.explode("math", "science", "history")
ShapeError: exploded columns must have matching element counts

Please note in the above example that the order of values in the lists is important!
The items that are lined up end up on the same row in the results. We've discussed
sorting of lists in Chapter 11. Additionally, the exploded columns must all yield the
same number of resulting rows, otherwise it’ll raise a ShapeError:

df = pl.DataFrame({
"id": [1,2],
"valuel": [["a", "b"], ["c"1]1,
"value2": [["a"], ["b"]],

Exploding | 263

b
df.explode("valuel", "value2")

ShapeError: exploded columns must have matching element counts

explode can even deal with nested lists:

df = pl.DataFrame({

"id": [1,2],

"nested_value": [["a", "b"], [["c"], ["d", "e"]11],
}, strict=False)
df

shape: (2, 2)

id nested_value

T T 1
164	list[list[str]]
i : :	
L I I

[["a"], ["b"]]
("], ["d", "e"]

Note that it with a nested structure it will only explode one layer at a time:

df.explode("nested_value")

shape: (4, 2)

T T 1
| id | nested_value |
[|
| 164 | list[str] |
i : :
[1] ["a"] |
[1 | ["b"] |
[2 | ["<"] |
! 2 ! [”d", uen] !

In case you want to get the string values, you'll have to call it two times:

df.explode("nested_value").explode("nested_value")

shape: (5, 2)

T T 1
| id | nested_value |
| ==] --- |
| 164 | str |
i : :
1 | a |
|1 |b |
2 |c |
2 |d |
2 |e |
1 I I

264

| Chapter 12: Reshaping

Partition into Multiple DataFrames

Previously we discussed the group_by operation in Chapter 10. You can use a compa-
rable function to split the DataFrame into multiple partitions. By using partition_by
you group a DataFrame by some given columns and return the groups as separate
DataFrames: partition_by takes the following arguments: by and *more_by:: The
column(s) to group by. maintain_order:: Ensure that the order of the groups is
deterministic. include_key:: Instead of a list of DataFrames, return a list of tuples
with the group key and the DataFrame. as_dict:: Return the group by key(s) as a
dictionary.

Let’s create an example with some fictional sales data for different regions:

df = pl.DataFrame({

"OrderID": [1, 2, 3, 4, 5, 6],

"Product": ["A", "B", "A", "C", "B", "A"],

"Quantity": [10, 5, 8, 7, 3, 12],

"Region": ["North", "South", "North", "West", "South", "West"]
b

Now you can partition the DataFrame by the Region column:
df.partition_by("Region")
[shape: (2, 4)

T T T 1
| orderID | Product | Quantity | Region |
[P R I B
| i64 | str | i64 | str |
: : : : :
| 1 | A | 10 | North |
| 3 [A | 8 | North |
L 1 1 L |
shape: (2, 4)

[I I I 1
| orderID | Product | Quantity | Region |
(i Db Dt e
| 164 | str | 164 | str |
: : : : :
| 2 | B | 5 | South |
| 5 | B | 3 | South |
L | | | |
shape: (2, 4)

I T T T 1
| orderID | Product | Quantity | Region |
[P R I B
| i64 | str | i64 | str |
: : : : :
| 4 | ¢ | 7 | west |
| 6 [A | 12 | west |
L 1 1 L I

Partition into Multiple DataFrames | 265

If you want to drop the column you're partitioning by, you can set the include_key to
False:

df.partition_by("Region", include_key=False)
[shape: (2, 3)

T T T 1
| OrderID | Product | Quantity |
[R
| 164 | str | 164 [
i : : :
| 1 | A | 10 I
| 3 | A | 8 |
L I I I
shape: (2, 3)

T T T 1
| orderID | Product | Quantity |
(S AN
| 164 | str | 164 |
: : : :
| 2 | B | 5 I
| 5 | B | 3 |
L I I I
shape: (2, 3)

T T T 1
| OrderID | Product | Quantity |
[Rt
| 164 | str | 164 [
i : : :
| 4 | c | 7 |
| 6 | A | 12 I
L I I I

]

And finally, if you want to get the results as a dictionary using a tuple with the group
keys as key, and the DataFrames as value, you can set the as_dict argument to True:

dfs = df.partition_by(["Region"], as_dict=True)
dfs

{('North',): shape: (2, 4)

I T
| orderID | Product | Quantity

T T 1

| | Region |
(RSN I e
| 164 | str | 164 | str |
l l l l l
| 1 | A | 10 | North |
| 3 | A | 8 | North |
L | | | |
('South',): shape: (2, 4)
I T T T 1
| orderID | Product | Quantity | Region |
RS IO [0t
| i64 | str | i64 | str |

266 | Chapter 12: Reshaping

L [l | |]
I T T T 1
| 2 | B | 5 | south |
| 5 | B | 3 | south |
L | | | |
('West',): shape: (2, 4)

T T T T 1
| orderID | Product | Quantity | Region |
(RS I (e
| i64 | str | i64 | str |
: : l : l
| 4 | ¢ | 7 | west |
| 6 | A | 12 | West |
L 1 1 1]

}

You can then get the DataFrames by accessing the dictionary with the key you want:

dfs[("North",)]

T T T T |
| orderID | Product | Quantity | Region |
[R It
| 164 | str | 164 | str |
: : : : :
| 1 | A | 10 | North |
| 3 | A | 8 | North |
L I I I I

And that’s how you can partition your DataFrame into multiple DataFrames!

Conclusion

In this chapter you learned how to reshape your data.

» We discussed the wide and long formats of data.

» We showed you how to pivot your data from a long to wide format.

» We showed you how to melt your data from a wide to long format.

o We showed you how to transpose your data, flipping the DataFrames diagonally.
o We showed you how to explode nested values into a long format.

o We showed you how to partition your DataFrame into multiple DataFrames.

Now that you're ready to reshape your data like a pro, you can now prepare your data
for visualization, which we'll discuss in the next chapter!

Conclusion | 267

CHAPTER 13
Visualizing Data

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 16th chapter of the final book. Please note that the GitHub repo will
be made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sgrey@oreilly.com.

The previous chapters have given you all the tools you need to transform raw data
into a polished DataFrame. But how do you turn such a DataFrame into something
insightful?

One way is through data visualization, and Python provides a plethora of packages
for that. Packages include hvPlot for quick visualizations, Matplotlib for low-level
plotting, Bokeh for interactive graphs, and Plotnine for leveraging the grammar of
graphics in Python.

This is both a blessing and a curse, because it’s likely there’s a package that fits your
needs, while it’s challenging to choose the right package. Moreover, each package
comes with its own set of features, assumptions, and pitfalls.

Figure 13-1 illustrates Python’s elaborate data visualization landscape. In this chapter
were focusing on hvPlot, because that’s built into Polars, and we demonstrate a
couple of alternative packages.

269

mailto:sgrey@oreilly.com

graph-tool
basemap
/cartopy

holoviews

Vega-Lit

< : > Ko o . .
Vincent %%@oeSuence Institute
9%

Figure 13-1. Python’s data visualization landscape by Jake VanderPlas (reproduced with
permission)

Q
Byl

Data visualization isn't just about making pretty pictures; its a fundamental part of
data science. By transforming a DataFrame into graphical form, you improve your
ability to understand trends, spot outliers, and tell stories that can influence decision
making. Effective data visualizations clarify the obscure and simplify the complicated,
making your data more accessible.

In this chapter you’ll learn how to:
 Quickly create bar charts, scatter plots, density plots, and histograms using the
built-in plotting functionality of Polars
o Compose and layer multiple plots
 Customize plots
« Create interactive visualizations
o Plot millions of points on a map
o Use alternative visualization packages such as Plotnine

o Create beautiful tables with nanoplots using the Great Tables package

270 | Chapter13:Visualizing Data

By the end of this chapter, you’ll have a good idea of what each package has to offer,
when to use which, and how to use them in combination with Polars. But first, we
need to talk about the data set that we will be using.

NYC Bike Trips

Throughout the chapter were going to use the same data, namely bike trips made
with Citi Bike rental bikes in New York City. Here’s what the DataFrame looks like."

import as
trips = pl.read_parquet("data/biketrips/*.parquet")

print(trips[:,:4])
print(trips[:,4:7])
print(trips[:,7:11])
print(trips[:,11:])

shape: (2_735_398, 4)

I I I | 1
bike_type	rider_type	datetime_start	datetime_end
cat	cat	datetime[ps]	datetime[ps]
L	l 1]		
I T T T 1			
electric	member	2024-03-01 00:00:02	2024-03-01 00:27:39
electric	member	2024-03-01 00:00:04	2024-03-01 00:09:29
.. [.. [..	.. I		
electric	casual	2024-03-31 23:59:57	2024-04-01 00:15:39
classic	casual	2024-03-31 23:59:58	2024-04-01 00:01:38
L 1 | 1 |

shape: (2_735_398, 3)

I I I 1
duration	station_start	station_end
-	o	o
duration[us]	str	str
L l l]		
I T T 1		
27m 37s	W30 St &8 Ave	Maiden Ln & Pearl St
om 25s	Longwood Ave & Southern Blvd	Lincoln Ave & E 138 St
..
15m 42s	Hart St & Wyckoff Ave	Monroe St & Bedford Ave
1m 40s	5 Ave & E 30 St	5 Ave & E 30 St
L | | i

shape: (2_735_398, 4)

I I I I
| neighborhood_start | neighborhood_end | borough_start | borough_end

| str | str | str | str

1 We're printing it in parts because it has 16 columns, which is too wide. If you open up the notebook of this
chapter from the our public repository, then you’ll be able to see the DataFrame in full in you execute trips.

NYCBike Trips | 271

https://github.com/jeroenjanssens/python-polars-the-definitive-guide:
https://citibikenyc.com/system-data:

T
Financial District | Manhattan

L 1 1]
I 1 1 1
Chelsea		Manhattan	
Longwood	Mott Haven	Bronx	Bronx
.
Bushwick	Bedford-Stuyvesant	Brooklyn	Brooklyn

| Midtown | Midtown | Manhattan | Manhattan

L | | 1 |
shape: (2_735_398, 5)

I T T T T 1

| lat_start | lon_start | lat_end | lon_end | distance |

| -- | --- | --- | --- | --- I

| f64 | fe64 | f64 | fe4 | fe4 |

L | 1 1 |]

I T T 1 T 1

| 40.749614 | -73.995071 | 40.707065 | -74.007319 | 4.83703 |

| 40.816459 | -73.896576 | 40.810893 | -73.927311 | 2.665806 |

| . [.. | .. | . [. |

| 40.704865 | -73.919904 | 40.685144 | -73.953809 | 3.606664 |

| 40.745985 | -73.986295 | 40.745985 | -73.986295 | 0.0 |

L | | 1 1 |

In March 2024, over 2.7 million Citi Bike rides were made across four boroughs
of New York City: the Bronx, Brooklyn, Manhattan, and Queens. (Staten Island,
the fifth borough, doesn’t have any Citi Bike stations.) Each borough has many
neighborhoods.

The bike_type is either “electric” or “classic” and the rider_type is either “mem-
ber” or “casual”. The duration is the difference between datetime_start and date
time_end.

The four columns lat_start, lon_start, lat_end, and lon_end are the start and
end GPS coordinates, respectively. The distance is in kilometers as the crow flies
between these two coordinates, not the actual distance traveled.

The only data cleaning that we’ll do at this point is to remove all bike rides that
started and ended at the same bike station and had a duration of less than five
minutes, as those are not actually trips:

trips = trips.filter(
~((pl.col("station_start") == pl.col("station_end")) &
(pl.col("duration").dt.total_seconds() < 5*%60))

)
trips.height

2672594

So, as an example, the last trip shown above, which started and ended at “5 Ave & E
30 St” and lasted 1 minute and 40 seconds, will be removed.

Once we've done that, the DataFrame trips still has nearly 2.7 million rows and a
variety of columns, including timestamps, categories, names, and coordinates. This
will allow us to produce plenty of interesting data visualizations.

272 | (Chapter 13: Visualizing Data

Alright, let’s figure out when people ride, how far they went, and which stations are
most popular by making some data visualizations.

Built-in Plotting with hvPlot

The quickest way to turn a DataFrame into a data visualization is to use the built-in
methods that Polars provides. These methods are available through the df.plot
namespace, for example: df.plot.scatter() and df.plot.bar(). Under the hood,
these methods are being forwarded to another package called hvPlot.

hvPlot is unlike most data visualization packages in that it doesn't do any visualiza-
tion by itself. Instead, it offers a unified interface to several other data visualization
packages, without locking the user in. Figure 13-2 shows an overview of hvPlots
architecture. Let’s go over this architecture step by step.

Data Ilbrarles Intermediate
. .plot() API Representation Plotting output
: B '.
e I:Eclzl Gegdqs \> Hoto‘/(ews ~ > Bokeh
pandas — >
(RaPIDS Ry (\ » \Amatpl tlib
. *$ xarray Ib‘-i' - hvPlot
. NetworkX Q) m

_ INTAKE
T Datashader plotly

Figure 13-2. hvPlot offers a unified interface to Bokeh, Matplotlib, and Plotly

First, hvPlot’s plotting methods accept Polars, Pandas, Ibis DataFrames, and many
other data structures of the PyData ecosystem. Second, hvPlot constructs an inter-
mediate, package-agnostic representation of the visualization using the HoloViews
package. Think of this representation as a description of how to create a plot.

It optionally uses the Datashader package when needed, for example to plot millions
of points on a map, which we'll do later. Third, hvPlot translates the intermediate
representation into a specification for either Bokeh, Matplotlib, or Plotly At this
point, the user has the opportunity to customize the plot using the package-specific
syntax. Finally, the output package renders the plot, meaning it turns the raw data
into pixels.

A First Plot

Let’s start with a scatter plot, which is a good way to visualize the relationship
between two continuous values. Because our trips DataFrame is rather large, well

Built-in Plotting with hvPlot | 273

keep only the trips that started at station “W 21 St & 6 Ave”, which happens to be the
busiest one of all:

(2]

trips_speed = (
trips
.filter(pl.col("station_start") == "W 21 St & 6 Ave")
.select(
pl.col("distance"),
pl.col("duration").dt.total_seconds() / 3600, (2]
pl.col("bike_type")
)
)

trips_speed

shape: (10_981, 3)

distance | duration | bike_type

f64

f64

cat

0.993271 | 0.089444 | electric
0.992056 | 0.059167 | electric
3.690942 0.326389 electric

I T T
I I I
I I I
I I I
L 1 1
I 1 T
| ©.452909 | 0.026944 | electric
I I I
I I I
I I I
I I I
L | |

We are keeping only the columns that are needed for the visualization. This is not
necessary, but it helps us show you what data we’re using.

The wunit of the duration column is hours. Alternatively, theres the
Expr.dt.total_hours() method, but this only returns whole hours.

The snippet below constructs the scatter plot using the method df . plot.scatter:

trips_speed.plot.scatter(x="distance", y="duration", color="bike_ type", (1)
xlabel="distance (km)", ylabel="duration (h)", (2]
ylin=(0, 2)) ©

These three arguments are the most important, as they determine which columns
are used for the position and color of each point.

Adding or changing labels isn’t necessary, but can clarify what the axes represent.

We manually limit the range of the y-axis, because there are some much longer
trips that would impact the visualization, making it more difficult to see smaller
values. You can also fix these kinds of issues by applying a filter to the Data-
Frame.

274

| Chapter 13: Visualizing Data

<

duration (h)
]

0.5 4
] @ electric

classic

O 7 eumwsaemec s mesme

distance (km)

Figure 13-3. The relationship between distance and duration per bike type

Figure 13-3 shows that, generally speaking, electric bikes are faster and travel a
greater distance than classic ones.

Methods in the Plot Namespace

The method df.plot.scatter() is just one of the many methods available in the
df.plot namespace. To see which methods are available, you can use tab completion
(that is, press the TAB key after df . plot.):

trips.plot.<TAB>

Available methods include:
df.plot.area()

Plots a area chart similar to a line chart except for filling the area under the curve
and optionally stacking.

df.plot.bar()
Plots a bar chart that can be stacked or grouped.

df.plot.bivariate()
Plots 2D density of a set of points.

df.plot.box()
Plots a box-whisker chart comparing the distribution of one or more variables.

df.plot.density()
Plots the kernel density estimate of one or more variables.

df.plot.heatmap()
Plots a heatmap to visualizing a variable across two independent dimensions.

Built-in Plotting with hvPlot | 275

df.plot.hexbins()
Plots hex bins.

df.plot.hist()
Plots the distribution of one or histograms as a set of bins.

df.plot.line()
Plots a line chart (such as for a time series).

df.plot.scatter()
Plots a scatter chart comparing two variables.

df.plot.violin()
Plots a violin plot comparing the distribution of one or more variables using the
kernel density estimate.

Getting Help for a Method

Normally, to get help for a certain method, youd type help(<method>) or ?<method>.
We don’t recommend this for the methods in the df.plot namespace. The documen-
tation for the method df.plot.scatter(), for example, consists of 334 lines of text,
which is overwhelming. It contains a lot of information and arguments that are most
likely not always relevant.

Luckily, hvPlot offers its own help() function that allows you to disable certain
portions:

import
hvplot.help('scatter', generic=False, style=False)

The ‘scatter” plot visualizes your points as markers in 2D space. You can visua..
one more dimension by using colors.

The ‘scatter’ plot is a good first way to plot data with non continuous axes.
Reference: https://hvplot.holoviz.org/reference/tabular/scatter.html

Parameters

x : string, optional
Field name(s) to draw x-positions from. If not specified, the index 1is
used. Can refer to continuous and categorical data.

y : string or list, optional
Field name(s) to draw y-positions from. If not specified, all numerical
fields are used.

marker : string, optional
The marker shape specified above can be any supported by matplotlib, e.g. s..
See https://matplotlib.org/stable/api/markers_api.html.

c : string, optional

.. with 83 more lines

276 | Chapter 13: Visualizing Data

hvPlots” website provides great documentation as well, including many examples.
Keep in mind that many pages and examples are based on Pandas. This is under-
standable because Pandas is ten years older than Polars. Some examples assume that
your DataFrame has an Index, or even a Multilndex, which Polars DataFrames do
not. The next section offers advice for when this happens.

Pandas as Backup

Under the hood, hvPlot first converts the Polars DataFrame to a Pandas DataFrame.
It only copies the columns that are needed for the plot. This works well most of the
time, but not always.

Here’s an example where we want to create a heatmap. hvPlot’s documentation men-
tions the special .hour and .day modifiers to extract the hour and day of a DateTime,
respectively. Unfortunately, this is not (yet) supported for Polars DataFrames, so the
following yields an error:

trips_per_day_hour = (
trips
.sort("datetime_start")
.group_by_dynamic("datetime_start", every="1h")
.agg(pl.len())

)

trips_per_day_hour.plot.heatmap(x="datetime_start.hour',
y="'datetime_start.day',
C="len', cmap='reds"')

ValueError: 'datetime_start.hour' is not in list

We get an error because hvPlot attempts to copy the column datetime_start.day,
which doesn't exist in our DataFrame. Fret not; we can always fall back to Pandas by
using the df . to_pandas() method:

import

trips_per_day_hour.to_pandas().hvplot.heatmap(x="'datetime_start.hour',

y="'datetime_start.day',
C="'len', cmap='reds')

Built-in Plotting with hvPlot | 277

https://hvplot.holoviz.org/

y

datetime_start.da

30 5
25 4

20 4

E——
. —
10 15 20

datetime_start.hour

14000

12000

10000

8000

6000

4000

2000

Figure 13-4. Pandas is a good backup in situations where Polars is not yet supported

Manual Transformations

Let’s try another plot, the bar chart. The bar chart is particularly useful for showing
counts for different groups. hvPlot expects the DataFrame you provide to contain the

actual values to be used; it doesn’t do any transformation for you.

We're interested in the number of trips per bike type and rider type. Because these

counts are not literally in our DataFrame, we need to calculate them manually:

trips_type_counts = trips.group_by("rider_type", "bike_type").len()

trips_type_counts

shape: (4, 3)

T T T 1
| rider_type | bike_type | len |
| --- [--- | --- |
| cat | cat | u32

L 1 1 1
I 1 T 1
casual	electric	295530
member	electric	1420012
casual	classic	120888
member	classic	836164
L I I I

Once we have that, we can create a stacked bar chart as follows:

trips_type_counts.plot.bar(x="rider_type", y="len", by="bike_type",

ylabel="count", stacked=True,
color=["orange", "green"])

278

| Chapter 13: Visualizing Data

<

2.000e+6 - |

1.500e+6 |

count

1.000e+6 §

5.0000+5 [electric |

. B classic
0.000e+0

T T
member casual

rider_type

Figure 13-5. A stacked bar chart showing the number of trips per bike type and rider
type

Figure 13-5 shows that most bike trips are performed by Citi Bike members and that
the majority use an electric bike.

Changing the Plotting Backend

The default plotting backend in hvPlot is Bokeh. In most cases this suffices, but
there are situations where changing the backend to Plotly or Matplotlib is useful. For
example, Matplotlib is useful when there’s no need for an interactive visualization. Or
maybe you need to match the style of other visualizations in a report.

The backend can be changed by using the hvplot.extension() method and passing
either "matplotlib" or "plotly". For this, you first need to explicitly import the
hvplot package:

import hvplot
hvplot.extension("matplotlib")

Let’s create the same bar chart as in the previous section, but now with Matplotlib as
the backend:

trips_type_counts.plot.bar(x="rider_type", y="len", by="bike_type",
ylabel="count", stacked=True,
color=["orange", "green"])

Built-in Plotting with hvPlot | 279

led
bike_type
201 [dassic
) B clectric

154
”
c
E

10 A

05 A

DU T T

member casual
rider_type, bike_type

Figure 13-6. The same bar chart as before, but now created by the Matplotlib backend
Figure 13-6 shows that, apart from some minor visual differences, the same
unchanged code can produce a Matplotlib image.

Let’s reset the plotting backend to Bokeh for the purpose of this chapter:

hvplot.extension("bokeh")

Plotting Points on a Map

We haven't really used the coordinates in our DataFrame. Let’s change that by creat-
ing a map. You might be tempted to create a scatter plot, just as before:

trips.plot.scatter(x="'lon_start', y='lat_start', color='borough_start',
width=600, height=600)

280 | Chapter 13: Visualizing Data

40.9
| |+
] {q
' |op
40.85 |
1 &
| ey
4 A\ |
J | -
40.8
T J
I
@ J
T 40.75
40.7
R ® Manhattan
40.65 |
| ® Bronx
1 : ® Brooklyn
J ® Queens
| T T T t T T T T T T T T T t T T T T T T T T
-74 -73.95 -73.9 -73.85
lon_start

Figure 13-7. A plain scatter plot is not well suited for geographical data.

However, this is not a very good plot. It lacks context, the coordinates are not
properly projected, and because there’s way too much data, it can take up to a minute
to generate.

But, data visualization is meant to be an iterative process. A better way to visualize
coordinates is to use the df.plot.points() method, with the geo argument set to
True. This ensures that the coordinates are properly projected onto a proper map:
trips.plot.points(x="1lon_start", y="lat_start",
datashade=True, geo=True,

tiles="CartoLight",
width=800, heilght=600)

Built-in Plotting with hvPlot | 281

40.9

40.85

40.8

Latitude

40.75 ~

40.7

40.65

© 0Oy © CartoDB
SRS S i S B S S s s p e . S L
-74.1 -74 -73.9 -738 -73.7
Longitude

Figure 13-8. An interactive geographical plot

Its difficult to convey in a book, but the map shown statically in Figure 13-8 is
actually an interactive visualization. You can pan and zoom. Because we've set the
datashade argument to True, only the necessary data is used, maximizing efficiency.

Composing Plots

Sometimes a single plot is not sufficient. Using hvPlot, you can compose multiple
plots into one. There are two types of composition: stacking and layering.

First, we'll prepare some data that allows us to draw a line plot:

trips_hour_num_speed = (
trips
.sort("datetime_start")
.group_by _dynamic("datetime_start", every="1h")
.agg(num_trips=pl.len(),
speed=(pl.col("distance") / (pl.col("duration").dt.total_seconds() / 3600)).median())
.filter(pl.col("datetime_start") > pl.date(2024, 3 , 26))
)

trips_hour_num_speed

282 | (Chapter 13: Visualizing Data

shape: (143, 3)

I T T 1
| datetime_start | num_trips | speed

| - | - | --- |
| datetime[ps] | u32 | fe4 |
L 1 1]
) T T 1
2024-03-26 01:00:00	298	13.797211
2024-03-26 02:00:00	182	14.312177
2024-03-26 03:00:00	124	12.851984
2024-03-26 04:00:00	235	13.787607
2024-03-26 ©5:00:00	888	13.920884
.. [
2024-03-31 19:00:00	5216	10.696787
2024-03-31 20:00:00	3687	11.058714
2024-03-31 21:00:00	2878	11.445669
2024-03-31 22:00:00	2354	11.422508
2024-03-31 23:00:00	1603	11.884897
L | | |

In the first code snippet, we combine two plots using the + operator, which places two
plots next to each other:

(

)

trips_hour_num_speed.plot.line(x="datetime_start", y="num_trips") +
trips_hour_num_speed.plot.line(x="datetime_start", y="speed")

.cols(1)

o

© With the .cols() method, we ensure that the two plots are placed beneath each
other.

Built-in Plotting with hvPlot

283

ips

num_tri

n
(=]
s]
S
|

10000

8000

6000

4000

2000

speed

t t t t t
03/27 03/28 03/29 03/30 03/31

datetime_start

)
b b b e pea o J

t t t t t
03/27 03/28 03/29 03/30 03/31

datetime_start

Figure 13-9. Two plots can be placed next to each other

In the second code snippet, we combine two plots:

(

trips_hour_num_speed.plot.line(x="datetime_start", y="num_trips") *
trips_hour_num_speed
filter(pl.col("num_trips") > 9000)
.plot.scatter(x="datetime_start", y="num_trips", c="red", s=50)

284

Chapter 13: Visualizing Data

12000

<

10000

8000 3

ips

6000

num_trij

4000

2000

t t t t t
03/27 03/28 03/29 03/30 03/31

datetime_start

Figure 13-10. Two plots can be placed on top of each other

Notice that we're using two different DataFrames (the second is a subset of the first)
and two different plot types (a line plot and a scatter plot).

Adding Interactive Widgets

The Bokeh backend already offers interactivity: you can zoom in and out, pan to
move to different parts of the plot, and hover over elements to get more information.

Using the groupby keyword argument, you can add one or more widgets. The column
name or names passed to this argument slices the data into multiple subsets. With the
widgets you can select which subset of the data is used for the plot.

Here’s an example where we group by date. The widget type is based on the type of
the column. As you can see in Figure 13-11, the widget for selecting the date is a
slider.

trips_per_hour = (
trips
.sort("datetime_start")
.group_by dynamic("datetime_start", group_by="borough_start", every="1h")
.agg(pl.len())
.with_columns(date=pl.col("datetime_start").dt.date())
)

trips_per_hour

shape: (2_972, 4)

I T T T 1
borough start	datetime_start	len	date
-	-	o]	
str	datetlme[us]	u32	date
L l 1 1]			
I T T T 1			
Manhattan	2024-03-01 00:00:00	480	2024-03-01
Manhattan	2024-03-01 01:00:00	294	2024-03-01

Built-in Plotting with hvPlot | 285

Manhattan	2024-03-01 02:00:00	187	2024-03-01
Manhattan	2024-03-01 03:00:00	160	2024-03-01
Manhattan	2024-03-01 04:00:00	126	2024-03-01
..	.. I [
Queens	2024-03-31 19:00:00	366	2024-03-31
Queens	2024-03-31 20:00:00	336	2024-03-31
Queens	2024-03-31 21:00:00	211	2024-03-31
Queens	2024-03-31 22:00:00	176	2024-03-31
Queens	2024-03-31 23:00:00	144	2024-03-31
L | | | |

trips_per_hour.plot.line(x="datetime_start", by="borough_start",
groupby="date", widget_location="left_top')

date: 2024-03-01 00:00:00 date: 2024-03-01 00:00:00
o
5000 3
4000 3
8 3000 borough_start
2000 3 — Bronx
— Brooklyn
1000 3
Manhattan
0] - — o ———————= — Queens
T T T t 1
03/01 04h o8h 12h 16h 20h
datetime_start

Figure 13-11. Interactive widgets are easily added with the groupby keyword argument

You can also pass a list of column names to the groupby keyword argument, to create
multiple widgets.

Common Customizations

hvPlot offers many ways to customize a plot through additional keyword arguments.
Those keyword arguments are common across all plot types. We've already used a
couple, such as ylim, width, and height.

The keyword arguments we use most often to improve the readability of a plot are
listed in Table 13-1

Table 13-1. Common arguments for hvPlot

Argument Description

cmap Sets the colormap. Default None. Common ones are Category10, viridis, and fire.?

fontscale Scales the size of all fonts by the same amount. For example, fontscale=1. 5 enlarges all fonts
(title, xticks, labels etc.) by 50%. Default value is 1.

grid Whether to show a grid. Default value is False.

logx, logy Enables logarithmic x- and y-axis respectively. Default value for both is False.

rot Rotates the axis ticks along the x-axis by the specified number of degrees. Default value is 0.

286 | Chapter 13: Visualizing Data

Argument Description
title Title for the plot. Default is "".
width, height The width and height of the plot in pixels. Default values are 700 and 300, respectively.

xlabel, ylabel, Axis labels for the x-axis, y-axis, and colorbar, respectively. Default value is None, in which case the
clabel column name is used as the label.

xim, ylim Plot limits of the x- and y-axis, respectively. Default value is None. Use either a tuple or list of two
numerical values.

2 See the Holoviews User Guide about Colormaps for more information.

Here’s an example that demonstrates these keyword arguments. Because of all the
customizations, Figure 13-12 is arguably the ugliest plot in the book. It also includes
a couple of faux-pas: redundant use of color, y-axis not starting at zero, and a
nonsensical logarithmic scale. But that’s the price we have to pay to demonstrate how
to customize a plot. (There is indeed such a thing such as too much customization.)
Let’s try it:
busiest_stations = (
trips
.group_by(station="station_start").agg(

num_trips=pl.len(),
)

.sort("num_trips", descending=True)
.head(20)
)

busiest_stations

shape: (20, 2)

station num_trips
str u32

W 21 St & 6 Ave 10981
Forsyth St & Broome .. | 9988
Broadway & W 58 St 9771

Delancey St & Eldrid.. | 8947
Ave A & E 14 St 7194
West St & Chambers S.. | 6709
W 30 St & 10 Ave 6505
Amsterdam Ave & W 73.. | 6484
W 43 St & 10 Ave 6451

I I
I I
I I
I I
L 1
I T
I I
I I
I I
| 8 Ave & W 31 St | 8977
I I
I I
I I
I I
I I
I I
I I
L |

fig = busiest_stations.plot.bar(x="station", y="num_trips", color="num_trips",
cmap="viridis",
fontscale=1.2,
grid=True,

Built-in Plotting with hvPlot | 287

https://holoviews.org/user_guide/Colormaps.html

logx=False, logy=True,

rot=45,

title="Busiest Citi Bike Stations",
width=800, height=400,

xlabel="", ylabel="Number of trips",
x1lim=None, ylim=(4000, None))

fig

Busiest Citi Bike Stations

11000
10000
9000

8000
7000

6000

Number of trips

5000

Figure 13-12. There is a thing such a too much customization

See hv.plot.help(kind="...") for all available keyword arguments. Some are for
common customizations and some belong to a particular kind of plot.

The HoloViews User Guide offers information on how to customize the underlying
HoloViews representation using the .opts() method. Within that method, using the
hooks argument, it’s possible to specify further customizations that are handled by the
backend (Bokeh, Matplotlib, and Plotly). To expand on the above figure (called fig),
here’s a code snippet that uses both of these customization approaches, producing
Figure 13-13:

def bokeh_hook(plot, element):

plot.handles["yaxis"].major_label_text_color = "blue"
plot.handles["plot"].title.align = "right"

fig.opts(invert_axes=True, invert_yaxis=True, hooks=[bokeh_hook])

288 | Chapter 13: Visualizing Data

https://holoviews.org/user_guide/Customizing_Plots.html:

Busiest Citi Bike Stations

W 21 St & 6 Ave] o
Forsyth St & Broome St]

Broadway & W 58 St |
8 Ave & W 31 St
Delancey St & Eldridge St
Broadway & W 25 St

1 Ave & E 68 St |
W 31 St& 7 Ave
University Pl & E 14 St
Lafayette St & E 8 St
Broadway & E 14 St
W41 St & 8 Ave

11 Ave & W 41 St |

E33St& 1 Ave

6 Ave & W 33 St

Ave A & E 14 St

West St & Chambers St
W30 St& 10 Ave
Amsterdam Ave & W 73 St
W 43 St & 10 Ave

T T T T

S ® S S ®
S § S §§ § § §§
® < & R S CY & o

Number of trips

Figure 13-13. And just when you thought you couldn’t customize it further!

Alternative Packages

hvPlot is not the only package you can use to visualize your Polars DataFrame. In this
section we would like to highight two alternatives: Plotnine and Great Tables.

Plotnine

Plotnine is a data visualisation package based on the layered grammar of graphics,
created by Hassan Kibirige. Its API is similar to ggplot2, a widely successful R
package by Hadley Wickham and others.

The underlying grammar of graphics is accompanied by a consistent API that allows
you to quickly and iteratively create different types of beautiful data visualisations
while rarely having to consult the documentation.

The Plotnine package can be installed from PyPI with:
$ pip install plotnine[all]
And imported as follows:

from plotnine import *

Alternative Packages | 289

https://plotnine.org/:

Import All The Things

Plotnine’s many functions more convenient.

While it’s generally considered to be bad practice to import every-
thing into the global namespace, we think its fine to do this in
an ad-hoc environment such as a notebook, as it makes using

If youd rather not clutter your global namespace, we advise you to

use import plotnine as p9 and prefix every function with p9.

We're going to use Plotnine to create scatter plots with a twist. First, we'll add an
additional layer—it is based on the layered grammar of graphics, after all. Then, we'll

turn the scatter plot into a plot with four panels.

The following code snippet prepares a DataFrame to show, once again, the relation-
ship between distance and duration. This time, however, we'll operate on the level of
bike stations, using the median distance and duration per station. The question we
want to answer here is to what extent distance and duration are correlated. Were only

considering bike trips within the same borough:

trips_speed = (

trips.group_by("neighborhood_start", "neighborhood_end").agg(
pl.col("duration").dt.total_seconds().median() / 3600,
pl.col("distance").median(),
pl.col("borough_start").first(),
pl.col("borough_end").first(),

pl.len(),
). filter(
(pl.col("len") > 30) &

(pl.col("distance") > 0.2) &

(pl.col("neighborhood_start") != pl.col("neighborhood_end")),

).with_columns(

speed=pl.col("distance") / pl.col("duration")

).sort("borough_start")
)

trips_speed

shape: (2_971, 8)

I T T T T T T 1
neighborhood_	neighborhood_	duration	..	borough_end	len	speed
start	end	---		---	-	---
---	---	fo4		str	u32	fea
str	str I		I I I			
L 1] 1 1 1 1]						
I T T T T T T 1						
Morris	East	©.252778	..	Bronx	38	12.14096

| Heights | Morrisania | | | | |
| Tremont | Wwest Farms | ©.080833 | .. | Bronx | 121 | 12.197868

| . | . | .. | .| . |] . |
| Long Island | Clinton Hill | 0.469861 | .. | Brooklyn | 58 | 13.09114 |
| city I I | I I I
| Long Island | West Village | 0.539444 | .. | Manhattan | 61 | 10.26295 |

290 | Chapter 13:Visualizing Data

| city | | || | | |
L I L [1 L I

Here’s the Plotnine code needed to create the first scatter plot. Each row (and in
Figure 13-14 each point) is a pair of start and end stations within the same borough.

(
ggplot(data=trips_speed
.filter(pl.col("borough_start") == pl.col("borough_end")),
mapping=aes(x="distance", y="duration", color="borough_end")) +
geom_point(size=0.25, alpha=0.5) +
geom_smooth(method="1owess", size=2, se=False, alpha=0.8) +
scale_color_brewer(type="qualitative", palette="Set1") +
labs(title="Trip distance and duration within each borough",
x="Distance (km)", y="Duration (m)", color="Borough") +
theme_linedraw() +
theme(figure_size=(8, 6))
)

Trip distance and duration within each borough

0.75

Borough
E o501 E Bronx
S E Brooklyn
g E Manhattan
a E Queens

0.25

Distance (km)

Figure 13-14. Trip distance and duration within each borough

By negating the filter, we can investigate the relationship between trip distance and
duration for trips across boroughs. Because we have four different starting boroughs,

it makes sense to create four scatter plots. We use the facet_wrap() function to
create four panels, one for each borough.

Alternative Packages | 291

ggplot(data=trips_speed
.filter(pl.col("borough_start") != pl.col("borough_end"))
.with_columns(
("From " + pl.col("borough_start")).alias("borough_start")),
mapping=aes(x="distance", y="duration", color="borough_end")) +
geom_point(size=0.25, alpha=0.5) +
geom_smooth(method="1owess", size=2, se=False, alpha=0.8) +
scale_color_brewer(type="qualitative", palette="Set1") +
facet_wrap("borough_start") +
labs(title="Trip distance and duration cross borough",
x="Distance (km)", y="Duration (m)", color="To Borough") +
theme_linedraw() +
theme(figure_size=(8, 6))

Trip distance and duration cross borough

08

0.6

0.4

0.2 To Borough
E E Bronx
c
£ =L
g | =] Manhattan
O os; EQueens

06

0.4

02| EH

25 5.0 75 10.0 125 25 50 75 10.0 125
Distance (km)

Figure 13-15. Cross-borough trip distance and duration

If you compare the two code snippets above, you'll find that they share a lot of code.
We only changed the data argument of the ggplot() function, added facet_wrap in
the second snippet to create the four panels, and updated some of the labels. This is
possible thanks to Plotnine’s composable API. It creates a plot by chaining methods,
rather than adding keyword arguments to one method.

292 | Chapter 13: Visualizing Data

For more information about Plotnine, refer to its website or Jeroen’s blogpost.

Great Tables

So far, we've gone from a DataFrame all the way to a data visualization, turning raw
numbers into colorful pixels. There’s a third approach that sits halfway between these
two extremes. We're talking about tables. The Great Tables package by Rich Iannone
and Michael Chow enables you to create, well, great tables.

A table is great when it presents information in a clear and structured way. That may
include:

+ Readable column names
o Numerical values with proper formatting
» Row grouping
o Styling to draw attention to important values
o Annotations such as titles, labels, and footnotes
Great Tables’ underlying philosophy is based on a cohesive set of table components

(see Figure 13-16). Starting with a DataFrame as input, you can iteratively chain
methods to add elements and apply formatting.

The Components of a Table

TABLE TITLE
HEADER SUBTITLE

SPANNER LABEL

STUB COLUMN COLUMN

HEAD STUBHEAD LABEL COLUMN COLUMN LABEL LABELS
LABEL LABEL
ROW GROUP LABEL
ROW LABEL cell cell cell TABLE
STUB
ROW LABEL cell cell cell BODY
SUMMARY LABEL Summary Cell | Summary Cell | Summary Cell
FOOTNOTES TABLE
SOURCE NOTES FOOTER

Figure 13-16. Components of a Great Table (reproduced with permission from the Great
Tables authors)

Alternative Packages | 293

https://plotnine.org
https://jeroenjanssens.com/plotnine/
https://posit-dev.github.io/great-tables/articles/intro.html

The Great Tables package can be installed from PyPI with:

$ pip install great_tables

Let’s prepare a DataFrame for a great-looking table. The code snippet below calculates
the three busiest stations per borough:

busiest_stations = (
trips
.group_by((1]
station=pl.col("station_start"),
date=pl.col("datetime_start").dt.date()

)
-agg(
borough=pl.col("borough_start").first(),
neighborhood=pl.col("neighborhood_start").first(),
num_rides=pl.len(),
percent_member=(pl.col("rider_type") == "member").mean(),
percent_electric=(pl.col("bike_type") == "electric").mean()
)

.sort("date")

.group_by("station")

-agg(
pl.col(pl.String).first(),
pl.col(pl.NUMERIC_DTYPES).mean(),
pl.col("num_rides").alias("rides_per_day") (2]

)

.sort("num_rides", descending=True)

.group_by("borough", maintain_order=True).head(3)

)

busiest_stations

shape: (12, 7)

I T T T T T 1
| borough | station | neighbor | num_ride | percent_ | percent_ | rides_pe |
| --- | --- | hood | s | member | electric | r_day

| str | str I N T N
| | | str | fe64 | fe4 | fe4 | list[u32 |
I I I I I I [] I
L | 1 1 l | 1]
I T 1 1 T T 1 1
| Manhattan | W 21 St & | Chelsea | 354.2258 | 0.913584 | 0.583709 | [325, |
| | 6 Ave | | o6 | | | 88, .. |
I I I I I I | 308] I
| .. | . | .. | .. | . | .. | . |
| Bronx | Plaza Dr | Mount | 31.70967 | ©.837427 | 0.948925 | [30, 19,

| | & w170 | Eden | 7 | | | .. 33]

I | st I I I I I I
L | | | | 1 1 |

This first aggregation is needed because we want to display counts per station per
day using nanoplots (we'll get to these later).

294

| Chapter 13: Visualizing Data

@ The values in this column will make sense once we use them to create a nanoplot.
The following code uses Great Tables to produce a table:

import polars.selectors as cs
from great_tables import GT, style, md

(

GT(busiest_stations, rowname_col="station", groupname_col="borough") (1)
.cols_label(

neighborhood="Neighborhood",

num_rides="Mean Daily Rides",

percent_member="Members",

percent_electric="E-Bikes",

rides_per_day="Rides Per Day",
)
.tab_header(

title="Busiest Bike Stations in NYC",

subtitle="In March 2024, Per Borough"
)
.tab_stubhead(label="Station")
.fmt_number(columns="num_rides", decimals=1)
.fmt_percent(columns=cs.starts_with("percent_"), decimals=0) (3]
.fmt_nanoplot(columns="rides_per_day", reference_line="mean")
.data_color(columns="num_rides", palette="Blues")
.tab_options(row_group_font_weight="bold")
.tab_source_note(source_note=md(

"Source: [NYC Citi Bike](https://citibikenyc.com/system-data)"
)

)

Stations are grouped by borough to add structure.

We can give table columns proper names without needing to change the underly-
ing DataFrame.

© Great Tables accepts column selectors, making our code more compact.

Alternative Packages | 295

Busiest Bike Stations in NYC
In March 2024, Per Borough

Station Neighborhood = Mean Daily Rides Members E-Bikes Rides Per Day

Manhattan

W 215t &6 Ave Chelsea o1% v yibal i
Forsyth St & Broome St Lower East Side 95% 25% ‘\/“1'\\ ,./""'\.A.l'\.
Broadway & W 58 St Midtown - 80% 70% o ittt Mo ——
Brooklyn

Metropolitan Ave & Bedford Ave Williamsburg 185.4 85% 68% \/\/\’\\

N 7 St & Driggs Ave Williamsburg 146.0| 86% 66% e len T et ptag
Hanson Pl & Ashland Pl Fort Greene 144.1 84% 61% \,\\l‘\ Y
Queens

Queens Plaza North & Crescent St | Long Island City 127.0 85% 57%

Vernon Blvd & 50 Ave Long Island City 95.7 89% 66% \,\/\,'\/‘\/I
31 St & Newtown Ave Astoria 78.2 88% 60% '\./'"_,.l"‘\.‘,/"."""\.../""'"-"\. N
Bronx

Melrose Ave & E 150 St Melrose 41.7 83% 89% \,/\"\,\
E 161 St & River Ave Concourse 366 75% 88% f et ey mmeagdt
Plaza Dr & W 170 St Mount Eden 31.7 84% 95%

Source: NYC Citi Bike

Figure 13-17. A table showing information about the three busiest stations per borough
The output table is shown in Figure 13-17. The line plots in the right-most column
are known as nanoplots. They visualize the daily number of rides per station.

A nice property of having these methods as building blocks is that you can quickly
create a first table, then iteratively improve on it.

Takeaways

In this chapter we've looked at several ways to turn DataFrames into graphs and
tables. The key takeaways are:

o There are many data visualization packages
o Polars has built-in plotting capabilities that use hvPlot under the hood
o hvPlot uses either Bokeh, Matplotlib, or Plotly to produce plots

296 | Chapter 13:Visualizing Data

o hvPlot can combine multiple plots either next to each other or on top of each
other

 hvPlot can create widgets for interactively select and plott subsets of data
« hvPlot allows you to create geographical visualizations

» You can always use Pandas if a certain data visualization package doesn’t fully
support Polars yet

« Plotnine is a great data visualization package if you prefer to use the grammar of
graphics

o+ A table can be a valuable alternative to a plot and the Great Tables helps you
produce one that looks great

In the next chapter were going to look at extending Polars.

Takeaways | 297

About the Authors

Jeroen Janssens is a Senior Machine Learning Engineer at Xomnia in Amsterdam,
where he uses Polars on a daily basis. He enjoys wrangling data, implementing
machine learning models, and building solutions using Python, R, JavaScript, and
Bash. Previously, he ran Data Science Workshops, a training and coaching firm. Jer-
oen is the author of Data Science at the Command Line (O’Reilly, 2021). He has been
an assistant professor at Jheronimus Academy of Data Science and a data scientist
at various startups in New York City. Jeroen holds a PhD in machine learning from
Tilburg University and an MSc in artificial intelligence from Maastricht University.
He lives with his wife and two kids in Rotterdam, the Netherlands.

Thijs Nieuwdorp is the Lead Data Scientist at Xomnia in Amsterdam. His interest in
the interaction between human and computer led him to an education in Artificial
Intelligence at the Radboud University, after which he dove straight into the field
of Data Science. At Xomnia he witnessed the birth of Polars as Ritchie Vink started
working on it during his employment there , and has been using it in his projects ever
since. He enjoys figuring out complex data problems, optimizing existing solutions,
and putting them to good use by implementing them into business processes. Outside
work Thijs enjoys exploring our world through hiking and traveling, and exploring
other worlds through books, games, and movies. He lives in Amsterdam with his
partner.

	Cover
	Copyright
	Table of Contents
	Chapter 1. First Steps
	Overview
	Installing Polars
	Compiling Polars from Scratch
	Edge Case: Very Large Datasets
	Edge Case: Processors Lacking AVX support

	Configuring Polars
	Temporary Configuration Using a Context Manager
	Local Configuration Using a Decorator

	Downloading Datasets and Code Examples
	Crash Course JupyterLab
	Keyboard Shortcuts

	Using Polars in a Docker Container
	Conclusion

	Chapter 2. Data Types and Data Structures
	Arrow Data Types
	Nested Data Types
	Missing Values

	Series, DataFrames, and LazyFrames
	Data Type Conversion
	Conclusion

	Chapter 3. Eager and Lazy APIs
	Eager API: DataFrame
	Lazy API: LazyFrame
	LazyFrame Scan Level Optimizations
	Other Optimizations

	Performance Differences
	Functionality Differences
	Aggregations
	Attributes
	Computation
	Descriptive
	GroupBy
	Exporting
	Manipulation and Selection
	Miscellaneous

	Out-of-Core Computation with Lazy API’s Streaming Mode
	Tips and Tricks
	Going from LazyFrame to DataFrame and Vice Versa
	Joining a DataFrame and a LazyFrame
	Caching Intermittent Stages

	Conclusion

	Chapter 4. Reading and Writing Data
	Reading CSV Files
	Parsing Missing Values Correctly
	Reading Files with Encodings Other than UTF-8
	Reading Excel Spreadsheets
	Working with Multiple Files
	Reading Parquet
	Reading JSON and NDJSON
	JSON
	NDJSON

	Other File Formats
	Querying Databases
	Writing Data
	CSV Format
	Excel Format
	Parquet Format
	Other Considerations

	Conclusion

	Chapter 5. Beginning Expressions
	Methods and Namespaces
	Expressions by Example
	Selecting Columns with Expressions
	Creating New Columns with Expressions
	Filtering Rows with Expressions
	Aggregating with Expressions
	Sorting Rows with Expressions

	What Exactly Is an Expression?
	Properties of Expressions

	Creating Expressions
	From Existing Columns
	From Literal Values
	From Ranges
	Other Functions to Create Expressions

	Renaming Expressions
	Expressions Are Idiomatic
	Conclusion

	Chapter 6. Continuing Expressions
	Types of Operations
	Example A: Element-Wise Operations
	Example B: Operations that Summarize to One
	Example C: Operations that Summarize to One or More
	Example D: Operations that Extend

	Element-Wise Operations
	Operations That Perform Mathematical Transformations
	Operations Related to Trigonometry
	Operations That Round and Categorize
	Operations for Missing or Infinite Values
	Other Operations

	Nonreducing Series-Wise Operations
	Operations That Accumulate
	Operations That Fill and Shift
	Operations Related to Duplicate Values
	Operations That Compute Rolling Statistics
	Operations That Sort
	Other Operations

	Series-Wise Operations that Summarize to One
	Operations That Are Quantifiers
	Operations That Compute Statistics
	Operations That Count
	Other Operations

	Series-Wise Operations that Summarize to One or More
	Operations Related to Unique Values
	Operations That Select
	Operations That Drop Missing Values
	Other Operations

	Series-Wise Operations that Extend
	Conclusion

	Chapter 7. Combining Expressions
	Inline Operators Versus Methods
	Arithmetic Operations
	Comparison Operations
	Boolean Algebra Operations
	Bitwise Operations
	Using Functions
	Conclusion

	Chapter 8. Filtering and Sorting Rows
	Filtering Rows
	Filtering Based on Expressions
	Filtering Based on Column Names
	Filtering Based on Constraints

	Sorting Rows
	Sorting Based On a Single Column
	Sorting in Reverse
	Sorting Based on Multiple Columns
	Sorting Based on Expressions
	Sorting Nested Data Types

	Related Row Operations
	Takeaways

	Chapter 9. Working with Special Data Types
	Strings
	Methods
	Examples

	Categoricals
	Methods
	Examples
	Enum

	Temporal Data
	Methods
	Examples

	List
	Methods
	Examples

	Array
	Methods
	Examples

	Structs
	Methods
	Examples

	Conclusion

	Chapter 10. Summarizing and Aggregating
	Group by Context
	The Descriptives
	The Advanced
	User-Defined Functions
	Row-wise Aggregations with reduce and fold
	over() Expressions in Selection Context
	Dynamic Grouping with group_by_dynamic
	Rolling Aggregations with rolling
	Conclusion

	Chapter 11. Joining and Concatenating
	Joining
	Join Strategies
	Joining on Multiple Columns
	Validation

	Inexact Joining
	join_asof Strategies
	Additional Finetuning with tolerance and by
	Use Case: Marketing Campaign Attribution

	Vertical and Horizontal Concatenation
	Conclusion

	Chapter 12. Reshaping
	Wide Versus Long DataFrames
	Pivot to Wider DataFrame
	Melt to Longer DataFrame
	Transposing
	Exploding
	Partition into Multiple DataFrames
	Conclusion

	Chapter 13. Visualizing Data
	NYC Bike Trips
	Built-in Plotting with hvPlot
	A First Plot
	Methods in the Plot Namespace
	Getting Help for a Method
	Pandas as Backup
	Manual Transformations
	Changing the Plotting Backend
	Plotting Points on a Map
	Composing Plots
	Adding Interactive Widgets
	Common Customizations

	Alternative Packages
	Plotnine
	Great Tables

	Takeaways

	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

